

Chronic rhinosinusitis with nasal polyps: new classification and treatment paradigms

Amber Luong, MD, PhD, FACS

Professor and Vice Chair of Research
Dept of Otorhinolaryngology – Head and Neck Surgery
McGovern Medical School part of The University of Texas Health Science
Center at Houston

n.	iaativaa
Uυ	iectives

- > To discuss the novel classification of chronic rhinosinusitis
- \succ To review the immune dysfunction associated with CRS with nasal polyps with treatment implications
- \succ To review spectrum of treatment options for CRS with nasal polyps

Immunology of CRS and treatment implications

Clinical classification of CRS

- ➤ CRSsNP
- ➤ CRSwNP
 - AFRS/eosinophilic mucin rhinosinusitis
 - · Cystic fibrosis
 - · Aspirin exacerbated rhinosinusitis

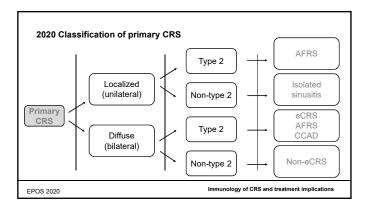
-	
•	

VS

CRSsNP

- ➤ 54 yo male presents with recurrent sinus infections
- ➤ CT sinus showed left maxillary sinus heterogenous opacification
- ➤ 57 yo female presents with recurrent sinus infections s/p prior FESS
- ➤ IgG subclass levels deficient

Immunology of CRS and treatment implications


CRSwNP

28 yo female with asthma and sensitivity to aspirin presents with recurrent nasal polyps

VS

3 major effector immunity

Type 1

- Protect against
- intracellular microbes

 Activate mononuclear phagocytes
- ILC1 and T_H1
- IFN-γ

Type 2

- Protect against
- helminthes and venoms

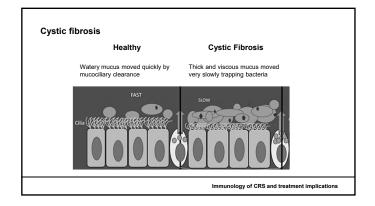
 Activate mast cells,
 eosinophils, and
 basophils
- ILC2 and T_H2
- IL-4, IL-13 and IL-5

Allergic diseases, asthma and CRSwNP

Type 3

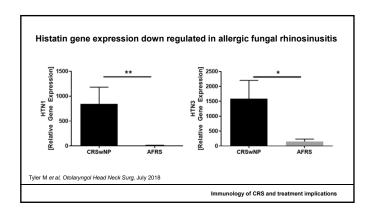
- Protect against extracellular bacteria and fungi
- Activate neutrophils, phagocytes and epithelial antimicrobial responses
- ILC3 and T_H17
- IL-17 and IL-22

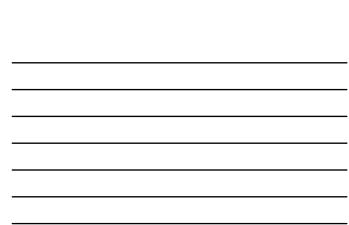
CRS

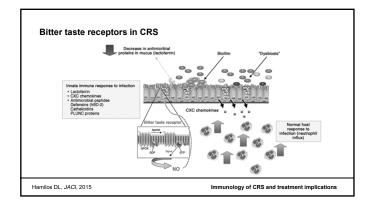

Immunology of CRS and treatment implications

Innate Immunity Adaptive Immunity Active Immunity Active Immunity Active Immunity Active Immunity Immunity Passive Immunity Immunity Passive Immunity Immunity Active Immunity Active Immunity Immunity Immunity Active Immunity Immunity Immunity Immunity Immunity Active Immunity Immunity

Mucus and mucociliary clearance


- Composed primarily of macromolecules produced by MUC5AC and MUC5B
- > Other components
 - · Antimicrobial peptides
 - $\bullet \ \ Immunoglobulins-IgA$
 - Enzymes
 - · opsonins
- > Cells responsible for mucus production
 - Goblet cells, serous cells, epithelial cells, other cells with mucosa

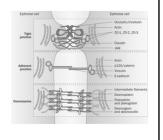

Mucociliary Transport	
	Periciliary liquid Ciliated cell Goblet cell
000.00	Basal cell Basement



Secreted antimicrobial peptides in sinus mucus

Defensins Lactoferrin
Cathelicidins (LL-37) Lysozyme
Histatins Chitinases
Elastase inhibitors (SLPI) Opsonins
C-type lectins Lipocalins

Epithelial cell barrier function


Tight junctions

Regulate transport of solutes and ions across epithelia

Adherens junctions

 Mediate cell-to-cell adhesions and promote formation of tight junctions

Disruption of tight junctions increase permeability and reduces transepithelial resistance

Immunology of CRS and treatment implications

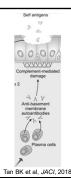
Innate effector cells Mast cells Increased percentage of mast cells within sinonasal mucosa of chronic rhinosinusitis with nasal polyp patients in independent of atopy June 1. Date, ROV. I Feman Advance, ROV, Roy Sense Lake, MOV, Morins J. Cards, MOV, Morins J.

Types of immunoglobulins > IgD • Trace amounts > IgM • 10% of serum immunoglobulins • pentamer > IgG • Most abundant isotype (75%) • Only isotype that can pass through human placenta > IgA • 15% total serum immunoglobulins, but predominates in body secretions • Exist as monomer and dimer > IgE

Immunology of CRS and treatment implications

Antibod	deficiencies	most common	immunodeficiency	in CRS
---------	--------------	-------------	------------------	--------

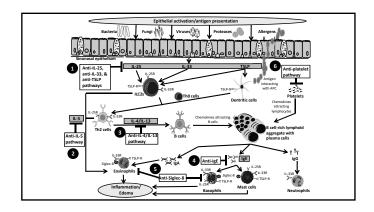
- > 3 antibody immunodeficiencies
 - · Selective IgA deficiency
 - · Common variable immunodeficiency
 - · Specific antibody deficiency
- \succ Prevalence in CRS patients screened for immunodeficiences
 - CVID


5%

Specific antibody deficiency 24%

Immunology of CRS and treatment implications

Dysfunctional adaptive immune response in CRSwNP Increase activated B cells and auto-reactive antibodies


- Elevated mucosal levels of autoreactive IgG and IgA to nuclear antigens and basement membrane components found in CRS
- > Levels associated with local IgE levels and disease severity
- Presence of tertiary lymphoid organs in CRS sinonasal mucosa -> increase activated B cells

Immunology of CRS and treatment implications

Take home message on adaptive immunity in CRS

CRSsNP - immunodeficiencies
CRSwNP - hyper adaptive immune response

Glucocorticoids	_	Pros	Cons
	Oral steroids	Potent effect	Effectiveness wanes Significant side effects Weight gain
Glucocorticoids	Nasal steroid sprays	Meta and systematic analysis consistently support efficacy	Limited sinus penetration Limited effectiveness with severe polyps
Topical Systemic	Steroid saline irrigations	Incorporates irrigations	Only 3-5% solution remains in sinuses
- Systomic	Steroid drops	Relatively concentrated dose	Challenging to administer correctly
→	Steroid eluting stents	High concentration of delivered steroids locally Bypass compliance issues	Uneven delivery Cost Repeat administration typical
→	Exhalation Delivery (Xhance)	Deeper penetration	Cost
		Immunology of CRS and	I treatment implications

Steroid eluting device


370 mcg over 14 days

1350 mcg over 90 days

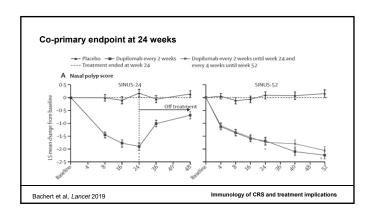
- > Placed in post-op ethmoid cavity
- All published RCTs met primary endpoints
- > FDA approved for CRSwNP

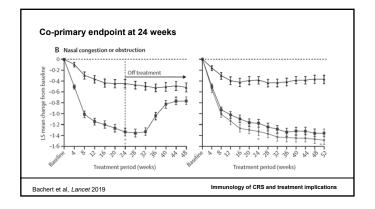
Immunology of CRS and treatment implications

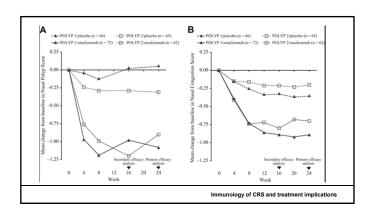
LYR-210 steroid eluting implant with positive Phase 2 RCT results

- ➤ Nasal implant loaded with **7500 mcg** mometasone delivers stable dose over at least 6 months
- Placed in-office under local in middle meatus, even in CRS patients with no prior sinus surgery
- ➤ Reported topline results Dec 7
 - SNOT-22: drop in 19 points more in treatment vs control at 6 months
 - · No treatment related serious events
- Planning Phase 3 trial now

Immunology of CRS and treatment implications


Fluticasone exhalation delivery system - Xhance®


- \succ 4 large clinical trials (2 DBRCT which included 650 CRS patients) support efficacy
- > Range of 20 point improvement in SNOT 22 over placebo at 16 weeks
- > 56 72% pts noted to have at least 1 pt improvement in polyp score at 16 weeks
- ➤ 93 mcg/spray fluticasone propionate



Dupilumab - FDA approved in US for CRSwNP June 2019 >18 yrs old w/ bil NP • NPS <u>> 5</u> Mometasone 100 ug BID Excluded AFRS Liberty SINUS 24 Liberty SINUS - 52 Placebo Dupilumab Placebo Dupilumab Dupilumab q2w-q4w (n=145) q2w (n=143) q2w (n=150) Sex Male 70 (53%) 97 (65%) 437 (60%) 88 (62%) 95 (62%) 87 (60%) Female 63 (47%) 55 (38%) 58 (38%) 58 (40%) 53 (35%) 287 (40%) Bil NPS 5.86 5.64 5.96 6.29 6.07 5.97 Asthma 82 98 96 449 (62%) AERD 38 46 44 41 35 204 (28%) Immunology of CRS and treatment implications Bachert et al, Lancet 2019

Biologic agent	Action	Effect	Status
eslizumab	IgG4 mAb Anti-IL5	Induce apoptosis of eosinophils and reduce local tissue recruitment of eosinophils	FDA approved for > 18yrs severe asthma – March 2016 BREATH trials completed
Mepolizumab	IL-5 antagonist	Induce apoptosis of eosinophils and reduce local tissue recruitment of eosinophils	FDA approved for > 6yrs eosinophilic severe asthma and Churg-Strauss SYNAPSE: TPS -0.73
Benralizumab	IL-5Rα	Reduce recruitment of eosinophils	FDA approved for >12 yrs eosinophilic severe asthma Completed Phase 3 trial
Omalizumab	Anti-IgE	Decrease cell bound IgE levels and decrease mast cell degranulation	Approved for allergic rhinitis and allergic asthma POLYP1 and 2: TPS -1.14 and -0.59

Biologics in CRS management Pros Pros Presents possible precision treatment CRF patients Associated with some dramatic responses Lack of biomarkers to identify responders Sene require IV Hintsion Limmunology of CRS and treatment implications CODS CODS Not curative Unknown long-term side effects of manapulating minimum responses Lack of biomarkers to identify responders For recquire IV Hintsion

Immunology of CRS and treatment implications

Conclusion

- > Spectrum of clinical presentation of CRS can be linked to different dysfunctions in the innate and adaptive immune response
- $\boldsymbol{\succ}$ CRS is a chronic inflammatory disease and steroids remain cornerstone
- > Molecular understanding of the pathophysiology of CRSwNP is expanding with introduction of potential therapeutic targets
- ➢ Biologics may be justified in severe CRSwNP, especially in those with other Type 2 comorbidities