The Smart Location Calculator: A new tool for measuring the social and environmental benefits of workplace location efficiency

APA Planning Webcast Series January 22, 2015

EPA Office of Sustainable Communities

Helps communities pursue smart growth strategies through:

- Grants and technical assistance
- Partnerships
- Research and tool development

ADOR OD

EPA Office of Sustainable Communities

Deeppor ettr

GSA Urban Development | Good Neighbor Program

GSA Business Context

375+ million square feet for 1 million workers
8,700 buildings in 2,000+ communities
482 historic buildings with 80+ NHLs
Annual buildings budget of \$10 Billion

Par ella

Courthouses, border stations, IRS offices...

GSA Urban Development | Good Neighbor Program

Con

Overview

- Background of the SLC
- SLC Demonstration
- Underlying block group model

EXTEN.

Apor Ob

- SLC details
- Application
- Q&A

SLC Background: Location Efficiency

- Much like energy efficiency, location efficiency reduces resource demands while fostering a healthier, more sustainable built environment and providing equitable access to government jobs and services.
- Location-efficient commercial facilities are generally:
 - Accessible via multiple transportation options, including public transit and active transportation;
 - Centrally-located within their "commute shed" or region so as to maximize accessibility and minimize travel distances for employees and other users; and
 - Integrated within a mixed-use environment that offers easy access to services and destinations.

SLC Background: Development

- Federal Leadership in Sustainability
 - Measuring GHG of Federal operations, incl. employee commutes (EO 13514)

Dar elli

- Continued attention to Local Planning Goals (EO 12072)
- Implementing Instructions on Sustainable Federal Locations (EO 13693)
- GSA Environment
 - Emphasis on consultation, collaboration, coordination
 - Educating large organization on 'location efficiency'
 - Challenging decision-making environment in the field
- Teaming up with EPA Expertise
 - Applying science to planning principles
 - Bringing measures to the table
 - Making data easily available to decision-makers

SLC Background: Research questions

- What measures of location efficiency would enable us to compare facility locations relative to each other – ie put numbers to the policy?
- How can we fill the gap where there has been little research into the effect of the built environment around workplace locations?

Par City

 How can we estimate worker vehicle miles traveled (VMT) and greenhouse gas emissions (GHG) associated with that travel?

SLC Demonstration: Overview

https://www.slc.gsa.gov/slc

Checkbox Cab

SLC Model: Intro to Block Group Model

 Demo showed difference between denser urban areas vs suburban sprawl or rural areas

- Urban form impacts commute patterns and VMT
- Urban form and transit data comes from the EPA's Smart Location Database (SLD)

SLC Model: Urban Form and Travel "D" Variables

- Density
- Diversity
- Design of Street
 Network

- Destination Accessibility
- Distance to Transit

Image sources: Lincoln Land Institute's "Visualizing Density" and Victor Dover

SLC Model: Data Source (1)

- EPA's Smart Location Database (SLD)
 - Nationwide geographic data resource including more than 90 attributes summarizing characteristics such as diversity of land use, neighborhood design, destination accessibility, employment, and demographics.
 - SLD dependent upon many data sources, including American Community Survey, NAVTEQ streets, Longitudinal Employment Household Dataset, plus more
 - Find more information about the SLD, including interactive mapping, data downloads and user guide at <u>http://www2.epa.gov/smartgrowth/smart-location-mapping#SLD</u>

apor Obr

SLC Model: Data Source (2)

- Model estimates how urban form characteristics of workplace block groups impact worker VMT generation when traveling to/from workplace block groups
- Worker commute data comes from 2009 National Household Travel Survey

Der ellt

- Worker characteristics (income, gender, etc.)
- Whether a trip generated VMT, and if so, how much

SLC Model: Modeling Process

Likelihood of worker to generate VMT

Amount of VMT generated

COUTE S

Average VMT per worker

Acceptor cells

SLC Model: Independent variables

A few example variables and their impact on VMT

VMT

VMT 📕

ADOF OUR

- Density of development in workplace block group VMT
 - Gross residential density
 - Gross employment density
- Street design characteristics in workplace block group VMT
 - Auto-oriented links per square mile
 - Pedestrian-oriented links per square mile

SLC Model: Commute vs. Non-Commute Travel

Commute Travel

Home-Work

Any trip made between home and work, including all legs of trip (stopping to drop off child, go shopping, go to gym, etc.)

Non-Commute Travel

Work-work

Any trip starting and ending at a workplace. Includes mid-day lunch trips, business outings, or trips from one workplace to another

Home-based-other trips were removed from dataset (trips from home to social events, shopping, recreation, etc)

SLC Model: Factors Affecting VMT

	Commute VMT	Non-Commute VMT
Jobs Density		
Housing Density		
Employment Mix		-
Job/ Housing Balance		
Pedestrian Oriented Network		
Transit Proximity		
Transit Density		
Auto Accessibility for Workers		
Transit Accessibility for Workers		
Regional Compactness		
Regional Transit Trips per Capita	-	-
* Other factors: income, car ownership, gender, gas price		

SLC Model: Smart Location Score Calculation

After VMT modeling is complete, each block group is evaluated relative to the other block groups in its region (CBSA or county)

Smart Location Score = $100 * (1 - \frac{VMT_tot - VMT_tot_min}{VMT_tot_max - VMT_tot_min}$

where VMT_tot_min and VMT_tot_max are the minimum and maximum VMT tot scores for the region

SLC Model: The Smart Location Index (SLI)

The block group scores are categorized using the following scale:
 90-100 = Excellent
 80-89 = Very good
 70-79 = Good
 60-69 = Fair
 40-59 = Low

Der elt

<40 = Very low

SLC: Block Group vs. Facility Level scores

- User-entered data
- Distance to transit
- ¼ mile buffer
 - Tool adjusts for edge effects
 - Variables impacted: residential and employment densities, network variables (links), transit density, access, land use mix

Employees:	100
Male:	57 🔶 %
	Update
1800 F St NW Washington, District	of Columbia 20006 Export
85 Smart Location Index ⊖	75 Block Group SLI & More scores
Distance to nearest transit stop:	0.02 miles
Distance to rail transit:	0.39 miles
	or move pointers on the map
Use average block	group distance to transit values
Existed in 2010 😧	
Cccupied in 2010	
Re-calculate Score	

Application: GSA's Economic Catalyst Initiative

- The goal of GSA's Economic Catalyst effort is to promote placing buildings/leases in locations that are <u>sustainable</u> and drive <u>community economic development</u> to be consistent with existing Federal policy
- GSA's new Location Policy (ADM 1097.1) directs us to:
 - Incorporate economic impact in evaluating and selecting space locations and making long term facility plans

ADOF OUR

- Improve coordination with local and regional planning groups to support local planning and sustainable development
- Collaborate, Consider, Coordinate ...

Application: Tracking GSA Performance

Goals:

Advance sustainability and support local development through smart location selections for GSA controlled space

Encourage space actions in areas close to mass transit, near employment densities and where people are more likely to conduct business

<u>National Measure</u>: Based on transactions (agreements with customer agencies)

Evaluate SLI on office space locations developed during FY 2016

Goal is >70

Reporting: Overall Inventory / New Transactions

Smart Lo	cation Ind	dex (SLI) - Over	all Inventory		
	ive in FY20		-		
. .	~	N. OA	DOF		
Region	Owner	No. OAs	RSF	Weighting	Weighted SLI
1	F	18	52,428	4,337,324	83
1		28	183,722	14,928,368	81
1	Total	46	236,150	19,265,692	82
2	F	15	154,978	10,888,332	70
2		16	143,700	7,937,968	55
2	Total	31	298,678	18,826,300	63
3	F	15	62,644	5,488,821	88
3	L	36	942,305	48,437,822	51
3	Total	51	1,004,950	53,926,643	54
4	F	18	440,370	30,343,576	69
4	L	87	910,452	62,992,446	69
4	Total	105	1,350,822	93,336,022	69
5	F	15	334,997	28,038,296	84
5	L	40	502,173	38,872,283	77
5	Total	55	837,169	66,910,579	80
6	F	15	444,340	25,819,335	58
6	L	28	186,068	11,836,695	64
6	Total	43	630,408	37,656,031	60
7	F	24	117,785	10,030,606	85
7	L	45	798,528	53,605,770	67
7	Total	69	916,313	63,636,376	69
8	F	39	648,337	50,913,979	79
8	L	27	387,300	26,505,746	68
8	Total	66	1,035,637	77,419,726	75
9	F	29	137.389	11.568.704	84
9	L	56	771,768	60,445,376	78
9	Total	85	909,157	72,014,080	79
10	F	20	109,550	8,136,875	74
10	-	29	429,499	35,941,909	84
10	Total	49	539,049	44,078,784	82
11	F	10	400,657	28,634,655	71
11	L	36	2,228,210	153,510,791	69
11	Total	46	2,628,867	182,145,446	69
	TOTAL	0	2,020,007	102,110,110	0.0
ALL	Own	218	2,903,475	214,200,502	74
ALL	Lease	428	7,483,724	515,015,176	69
	Total	646	10,387,199	729,215,678	70

- New transactions
- All Transactions & Overall Inventory
- Downloadable data

	ocation I ate: May-Ju) - Recent A	ctivity	
	ato. may ou	2010			
		No.			Weighte
Region	Owner	Leases	RSF	Weighting	ร์ม
1	L	3	12,728	887,412	70
2	L	4	22,622	1,007,645	45
3	L	7	328,466	23,232,888	71
4	L	12	107,332	6,747,094	63
Б	L	3	26,831	2,027,470	76
6	L	6	89,726	6,802,577	76
7	L	8	112,414	6,193,136	55
8	L	5	24,511	1,840,677	75
9	L	8	202,255	16,410,329	81
10	L	1	172,320	16,156,124	94
11	L	2	68,012	5,318,222	78
	Total	59	1,167,217	86,623,573	74

Other Reporting: Upcoming Opportunities

COLOR

ample

Application: Existing and Future Partnerships

- State facilities and strategic planning
 - California Strategic Growth Council
 - CA facilities in Sacramento and state-wide
 - Future state partnerships
- Rating systems
 - Use of the SLC to measure community compactness/site sustainability

ACT COLT

Post-webcast

Testing and Feedback

- Questions
- Use case scenarios
- Enhancements
- Methodology Critique

https://www.slc.gsa.gov/slc

Email Lori Zeller at zeller.lori@epa.gov

Smart Location Calculator

--Initial feedback form--

Smart Location Calculator link: https://www.slc.gsa.gov/slc

Please send this form to Lori Zeller with the subject line "SLC Feedback" to Zeller.Lori@epa.gov

As you explore the Smart Location Calculator, please jot down any notes or questions you have. We want to know what users are thinking as they use the tool and any questions that arise while using the tool. Below are a few guiding questions (feel free to answer any, all or none), plus additional space at the bottom for miscellaneous comments Thank you!

1) As you view the block group data, what questions do you have about how the data was created?

2) As you view the results for a location, what questions do you have about how that score was created?

3) What main questions do you have about how the scores were calculated?

4) How much detail are you interested in knowing about how the scores were calculated?

Open colo

Questions?

Ruth E. Kroeger GSA Urban Development Program ruth.kroeger@gsa.gov (202) 208-3288

Lori Zeller EPA Office of Sustainable Communities

<u>zeller.lori@epa.gov</u> (202) 566-0549 Frank Giblin GSA Urban Development Program frank.giblin@gsa.gov (202) 501-1856

John Thomas EPA Office of Sustainable Communities Thomas.john@epa.gov (202) 566-1285