Sea Level Change: We've got the "Best Available" Science, Now What?

February 28, 2019 APA Hazard Mitigation and Disaster Recovery Division

Matt Campo, Senior Research Specialist, Rutgers Nicole Faghin, Coastal Management Specialist Washington Sea Grant

Nicole Faghin Washington Sea Grant

Matt Campo Rutgers University

An introduction

Nicole Faghin, Washington Sea Grant

Where does SLR apply in planning?

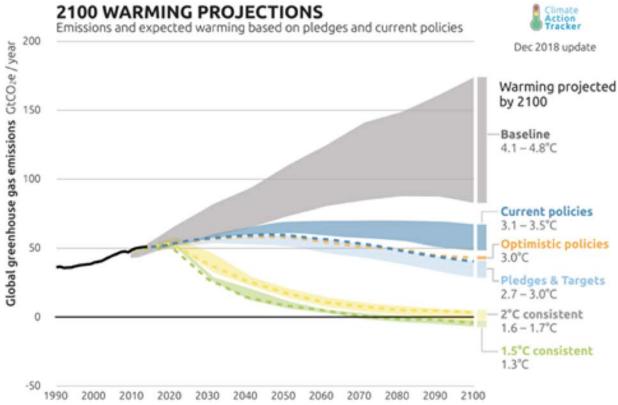
This series will help learn how to use SLR information for different types of planning documents

- #1: Overview of key concepts and current state
- #2 Integrating SLR Projections into plans
- #3 Creating Hazard Zones
- #4 Capital Facilities or Capital Improvement Planning and SLR

How we determine what information to use for SLR projections

Matt Campo, Rutgers

Table TS.2 | Projected change in global mean surface air temperature and key ocean variables for the *near-term* (2031–2050) and *end-of-century* (2081–2100) relative to the *recent past* (1986–2005) reference period from CMIP5. Small differences in the projections given here compared with AR5 reflect differences in the number of models available now compared to at the time of the AR5 assessment (for more details see Cross-Chapter Box 1 in Chapter 1).


		Near-ter	m: 2031–2050	End-of-cen	tury: 2081–2100
	Scenario	Mean	5–95% range	Mean	5–95% range
	RCP2.6	0.9	0.5–1.4	1.0	0.3–1.7
Global Mean Surface	RCP4.5	1.1	0.7–1.5	1.8	1.0-2.6
Air Temperature (°C) ^a	RCP6.0	1.0	0.5–1.4	2.3	1.4–3.2
	RCP8.5	1.4	0.9–1.8	3.7	2.6–4.8
Global Mean Sea Surface	RCP2.6	0.64	0.33-0.96	0.73	0.20–1.27
Temperature (°C) ^b (Section 5.2.5)	RCP8.5	0.95	0.60–1.29	2.58	1.64-3.51
Surface pH (units) ^b	RCP2.6	-0.072	-0.072 to -0.072	-0.065	-0.065 to -0.066
(Section 5.2.2.3)	RCP8.5	-0.108	-0.106 to -0.110	-0.315	-0.313 to -0.317
Dissolved Oxygen	RCP2.6	-0.9	-0.3 to -1.5	-0.6	0.0 to -1.2
(100–600 m) (% change) (Section 5.2.2.4) ^b	RCP8.5	-1.4	-1.0 to -1.8	-3.9	-2.9 to -5.0

Notes:

^a Calculated following the same procedure as the IPCC 5th Assessment Report (AR5). The 5–95% model range of global mean surface air temperature across CMIP5 projections was assessed in AR5 as the *likely* range, after accounting for additional uncertainties or different levels of confidence in models.

^b The 5–95% model range for global mean sea surface temperature, surface pH and dissolved oxygen (100–600 m) as referred to in the SROCC assessment as the very likely range (see also Chapter 1, Section 1.9.2, Figure 1.4).

IPCC, 2019: Technical Summary [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, E. Poloczanska, K. Mintenbeck, M. Tignor, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. In press.

Emissions and 'Pathways'

Zeke Hausfather & Glen P. Peters

Stop using the worst-case scenario for climate warming as the most likely outcome more-realistic baselines make for better policy.

scribe the effects of emissions choice has had unintended consequences which today are hoty debated. With the anticonstater pledged to do under the Paris Sixth Assessment Report (AR6) from the

ore than a decade ago, climate scientists and energy modellers made a choice about how to a catchy title Representative Concentration Pathways (RCPs)¹. One describes a world in climate agreement in 2015); it is called RCP2.6.

618 | Nature | Vol 577 | 30 January 2020

Emissions - the 'business as usual' story is misleading

Comment

Earth processes that influence local relative sea-level

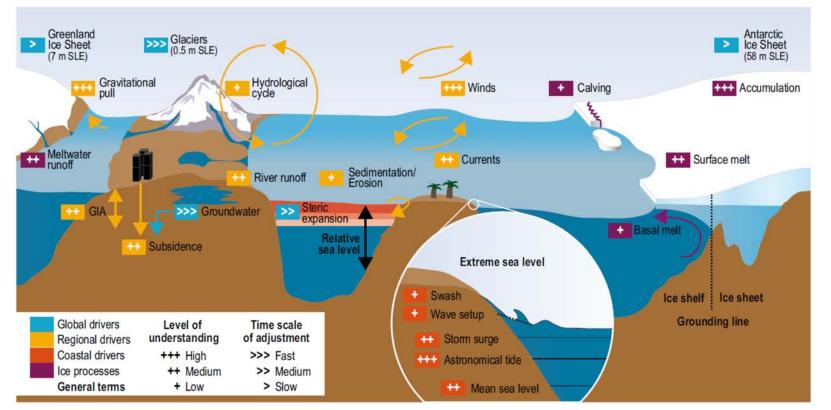
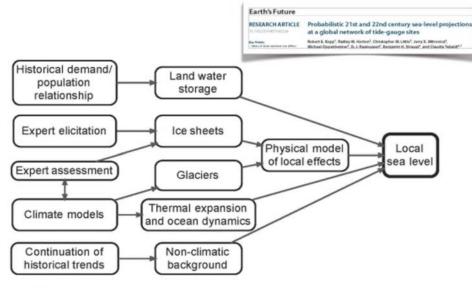



Figure 4.4 | A schematic illustration of the climate and non-climate driven processes that can influence global, regional (green colours), relative and extreme sea level (ESL) events (red colours) along coasts. Major ice processes are shown in purple and general terms in black. SLE stands for Sea Level Equivalent and reflects the increase in GMSL if the mentioned ice mass is melted completely and added to the ocean.

Image Source: IPCC SROCC (2019) -Chapter 4

Science supporting planning in the US

"Probabilistic" Approach (e.g., Kopp et al., 2014)

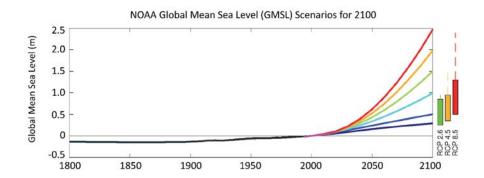
Kepp et al. (2014)

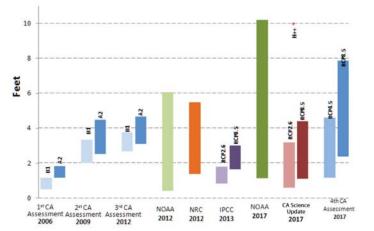
Scenario-based Approach (Sweet et al., 2017)

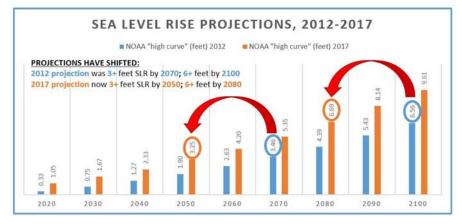
-

NOAA Technical Report NOS CO-OPS 083

GLOBAL AND REGIONAL SEA LEVEL RISE SCENARIOS FOR THE UNITED STATES






EUSGS SERDP

Users act on both probabilistic and scenario-based science

Griggs, G, Árvai, J, Cayan, D, DeConto, R, Fox, J, Fricker, HA, Kopp, RE, Tebaldi, C, Whiteman, EA (California Ocean Protection Council Science Advisory Team Working Group). Rising Seas in California: An Update on Sea-Level Rise Science. California Ocean Science Trust, April 2017.

Rhode Island Coastal Resources Management Council Shoreline Change SAMP Volume I (2018)

'Best Available' based on what we know at a point in time...

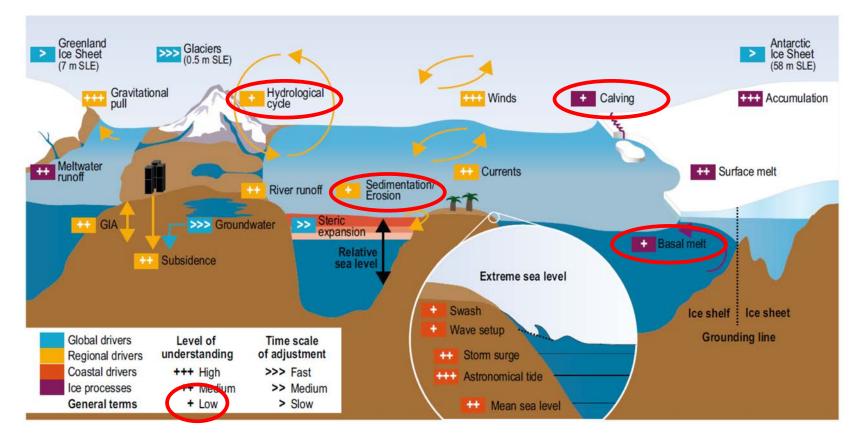
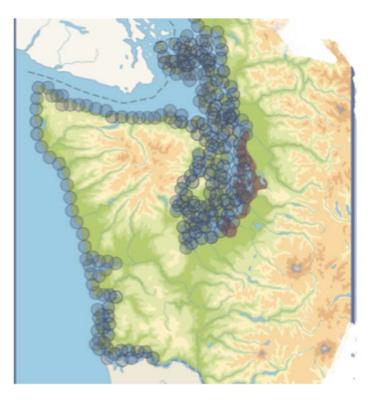



Figure 4.4 | A schematic illustration of the climate and non-climate driven processes that can influence global, regional (green colours), relative and extreme sea level (ESL) events (red colours) along coasts. Major ice processes are shown in purple and general terms in black. SLE stands for Sea Level Equivalent and reflects the increase in GMSL if the mentioned ice mass is melted completely and added to the ocean.

How close is close enough?

How close is close enough?

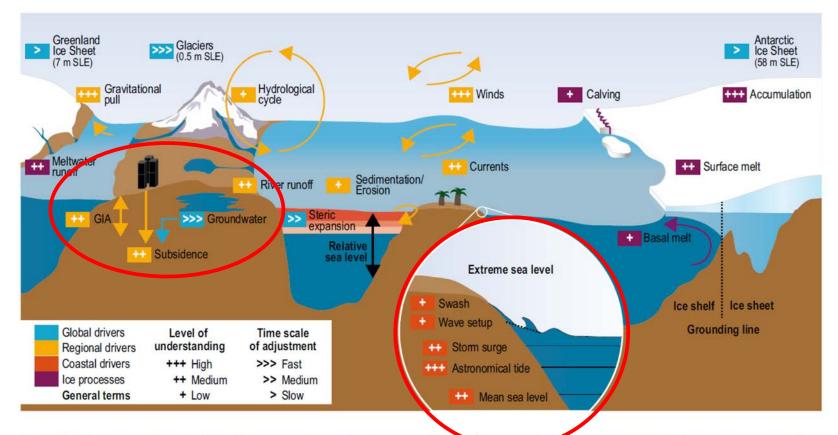


Figure 4.4 | A schematic illustration of the climate and non-climate driven processes that can influence global regional (green colours), relative and extreme sea level (ESL) events (red colours) along coasts. Major ice processes are shown in purple and general terms in black. SLE stands for Sea Level Equivalent and reflects the increase in GMSL if the mentioned ice mass is melted completely and added to the ocean.

Creating sea level change projections in Washington (and uncertainty)

Nicole Faghin, Washington Sea Grant

1, 2 or 3 feet?

Making it Local

Factors influencing sea level change

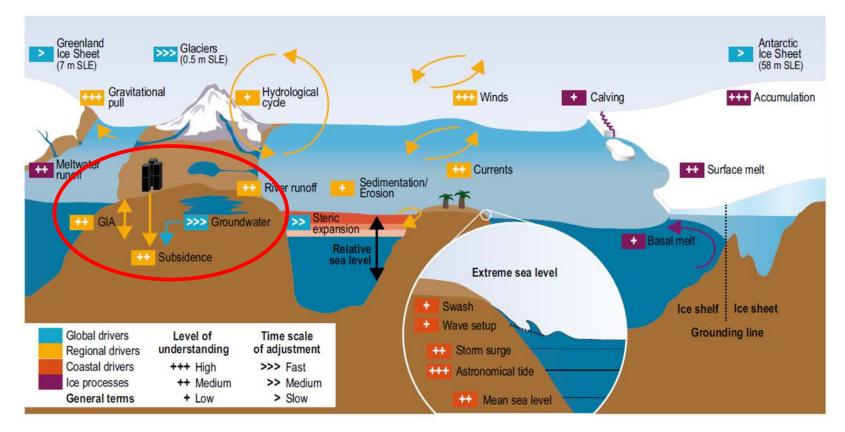
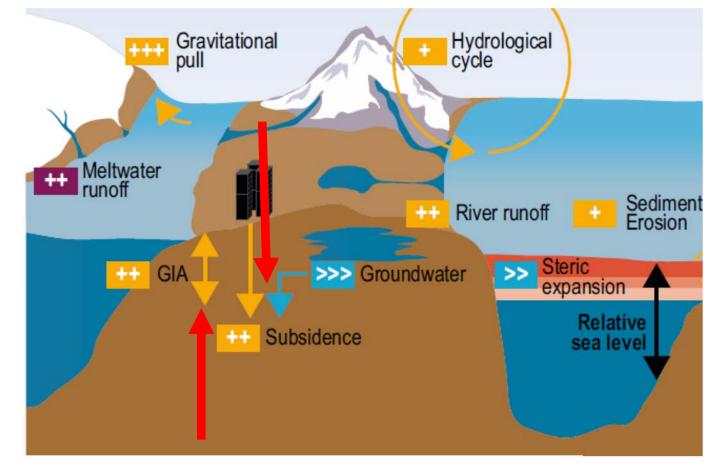
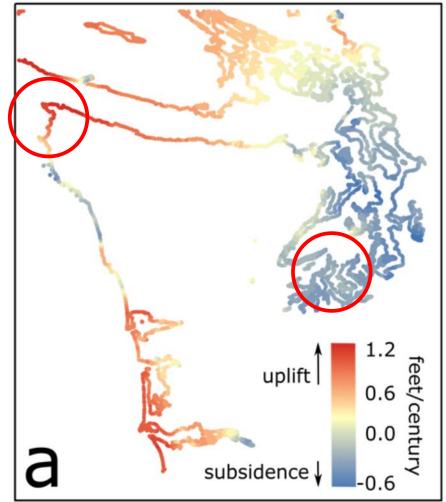
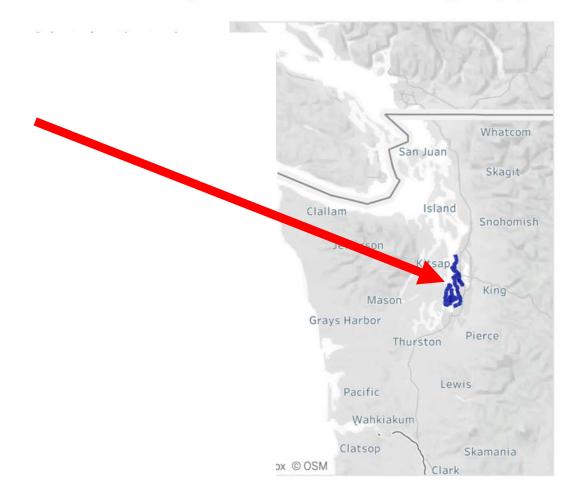




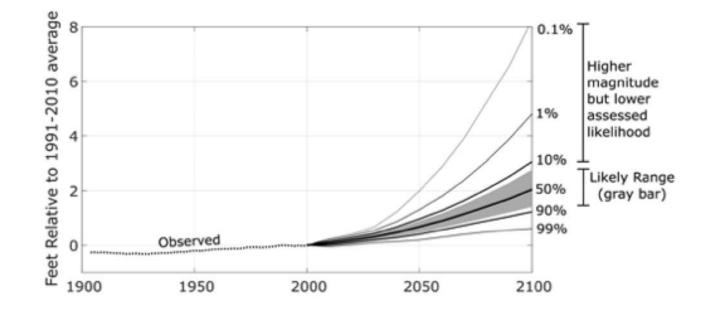
Figure 4.4 | A schematic illustration of the climate and non-climate driven processes that can influence global, regional (green colours), relative and extreme sea level (ESL) events (red colours) along coasts. Major ice processes are shown in purple and general terms in black. SLE stands for Sea Level Equivalent and reflects the increase in GMSL if the mentioned ice mass is melted completely and added to the ocean.

Focus on Vertical Land Movement

We conducted a Vertical Land Movement (VLM) study for Washington state



VISUALIZATION #1: Projected sea level change by year


https://wacoastalnetwork.com/chrn/research/sea-level-rise/

VISUALIZATION #1: Projected sea level change by year

https://wacoastalnetwork.com/chrn/research/sea-level-rise/

Washington State sea level rise projections 2018

Here is an example of a probability table for sea level rise

	99%	95%	90%	83%	50%	17%	10%	5%	1%	0.1%
2030	0	0.1	0.1	0.2	0.4	0.5	0.6	0.6	0.7	0.9
2040	0	0.2	0.2	0.3	0.5	0.8	0.8	0.9	1.1	1.4
2050	0	0.2	0.4	0.5	0.8	1.1	1.2	1.3	1.6	2.1
2060	0.1	0.4	0.5	0.6	1	1.4	1.5	1.7	2	3
2070	0.2	0.5	0.7	0.8	1.3	1.7	1.9	2.1	2.7	4.1
2080	0.3	0.6	0.8	1	1.6	2.1	2.4	2.6	3.4	5.4
2090	0.4	0.8	1	1.2	1.9	2.6	2.8	3.2	4.1	7
2100	0.4	0.9	1.2	1.5	2.2	3.1	3.4	3.8	5	8.6

Probability of Exceedance

We use **three key factors** to selecting Sea Level Rise projections

Timeframe

Risk tolerance

Greenhouse Gas Scenario

Timeframes

Timeframes/Life Spans for assessing SLR projections may be different depending on type of analysis

Vulnerability Assessment General Planning Project Design Restoration Project

Examples of Life Span (from Santa Monica Coastal Plan)

TYPE OF STRUCTURE	# of YEAR	<u>S</u>
a. Temporary structures:	<u>up to 5</u>	
b. Ancillary development :	<u>25</u>	
c. Residential/commercial	structures	
d. Critical infrastructure:		
 Asphalt roadwa 	y <u>25-50</u>	
 Concrete paven 	nent	<u>50-75</u>
 Bridges 	<u>75</u>	
 Water mains 	<u>100</u>	
 Storm drains 	<u>100</u>	
- Flastrical and a		100

• Electrical and gas <u>100</u>

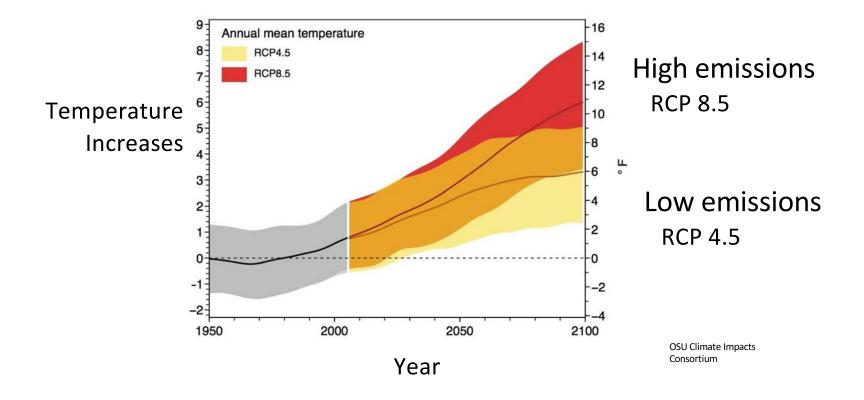
<u>75-100</u>

Risk or Probability of Exceedance

SOME TERMINOLOGY:

_

- Low-probability projections (0.1 17%)
 - Low chance sea levels will rise to this level
- Hi-probability projections (65-99%)


- High chance (pretty darn certain) sea levels will rise to this level
- Mid-range (likely) projections (17 65%)
 - 50/50 chance sea levels will rise to this level

Risk in context of selecting SLR projections

Decision	Strate gy	Approach	Example
Risk Averse	Avoid worst- case outcome s	Low probability, high impact sea level rise projections. 5%, 1%, and 0.1%	Wastewater Treatment Facility
Risk tolerant		Best case or central projection. 50% - 99%	Beach park

Green House Gas Scenarios

Sea Level projections depend in part on GHG Scenarios

Island County Sea Level Rise Average Projections

RCP 4.5 Sea-level rise projections averaged for Island County in feet based on Miller et al projections.

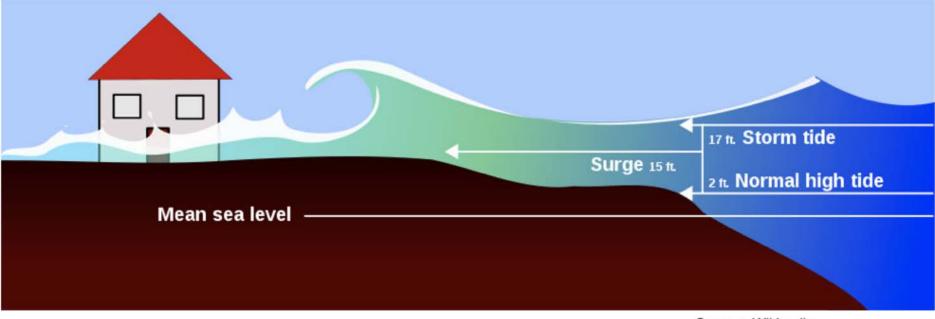
	Very Likely 95%	Likely 50%	Unlikely 1%	Mid-Range 17 - 83%
	1	000		ability
2050		RPC	4.5	- 1.0
2070	0.5	1.1	2.4	0.7 - 1.5
2100	0.7	1.8	4.4	1.1-2.5

RCP 8.5 Sea-level Rise Projections Averaged for Island County in Feet based on Miller et al projections

	Very Likely 95% probability)	Likely 50% probability	Unlikely 1% probability)	Mid-Range 17 - 83% probability
2050		RPC		- 1.0
2070	0.6	1.3	2.6	0.9 - 1.7
2100	1.0	2.2	5.0	1.5 - 3.0

Island County Sea Level Rise Average Projections

RCP 4.5 Sea-level rise projections averaged for Island County in feet based on Miller et al

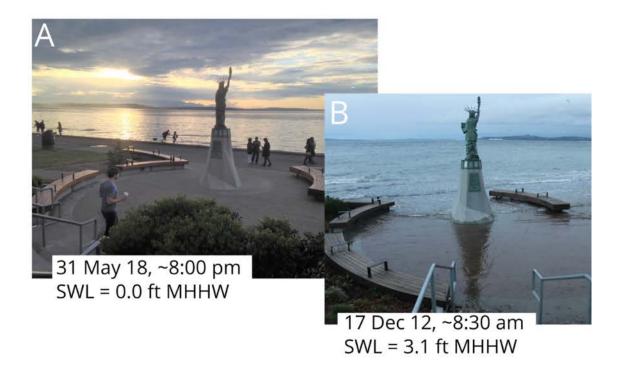

	/ery Likely 95% probability	Likely 50% probability	Unlikely 1% probability	Mid-Range 17 - 83% probability
2050	0.3	0.7	1.4	0.5 - 1.0
2070	0.5	1.1	2.4	0.7 - 1.5
2100	07	1.8	4.4	1.1-2.5
2100 RCP 8.5 Sea-	0.7 vel Rise Projec			
RCP 8.5 Sea-	vel Rise Projec	tions Averaged for	Island County in Fe	eet based on Miller et
RCP 8.5 Sea-	vel Rise Projec /ery Likely 95%	tions Averaged for Likely 50%	Island County in Fe Unlikely 1%	eet based on Miller et Mid-Range 17 - 83%
RCP 8.5 Sea- projections	vel Rise Projec /ery Likely 95% probability	tions Averaged for Likely 50% probability	Island County in Fe Unlikely 1% probability	eet based on Miller et Mid-Range 17 - 83% probability

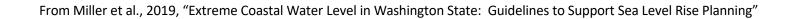
projections.				
	Very Likely 95% probability	Likely 50% probability	Unlikely 1% probability	Mid-Range 17 - 83% probability
2050	0.3	0.7	1.4	0.5 - 1.0
2070	0.5	1.1	2.4	0.7 - 1.5
2100	0.7	1.8	4.4	1.1-2.5
2100	0.7	1.0	7.7	1.1 2.5
	a-level Rise Projec	tions Averaged for	Island County in Fe	eet based on Miller et al
RCP 8.5 Sea				
RCP 8.5 Sea	Very Likely 95% probability	tions Averaged for Likely 50%	Island County in Fe Unlikely 1% probability	eet based on Miller et al Mid-Range 17 - 83%
RCP 8.5 Sea	-level Rise Projec Very Likely 95%	tions Averaged for Likely 50% probability	Island County in Fe Unlikely 1%	eet based on Miller et al Mid-Range 17 - 83% probability

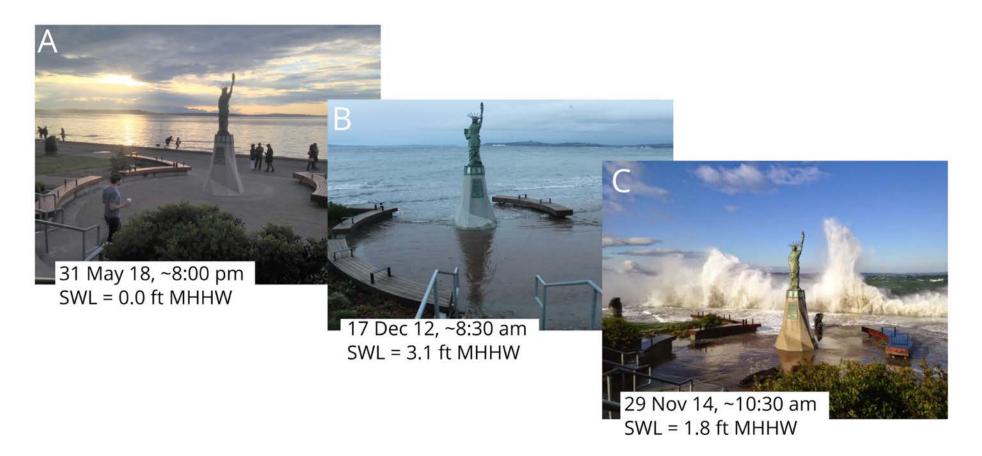
Island County Sea Level Rise Average Projections

RCP 4.5 Sea-level rise projections averaged for Island County in feet based on Miller et al projections.

Its more than just the rising of the sea level....




Source: Wikipedia

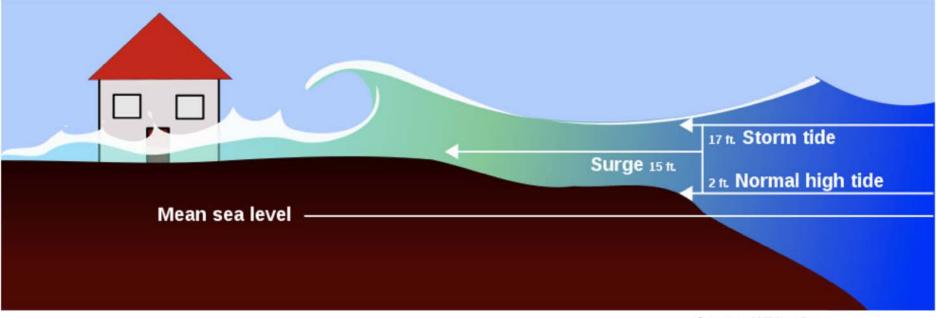


31 May 18, ~8:00 pm SWL = 0.0 ft MHHW

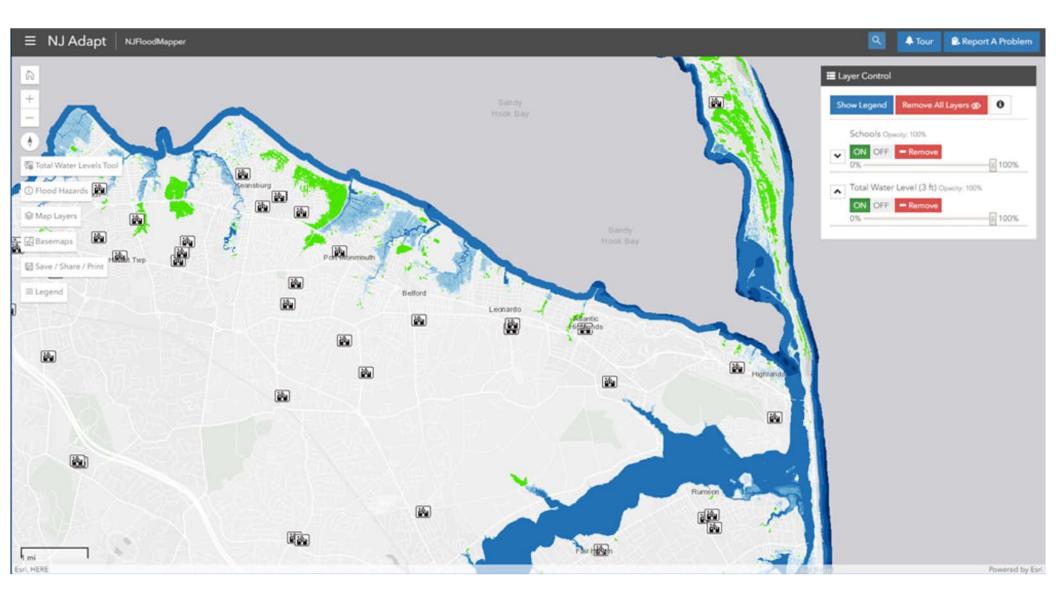
From Miller et al., 2019, "Extreme Coastal Water Level in Washington State: Guidelines to Support Sea Level Rise Planning"

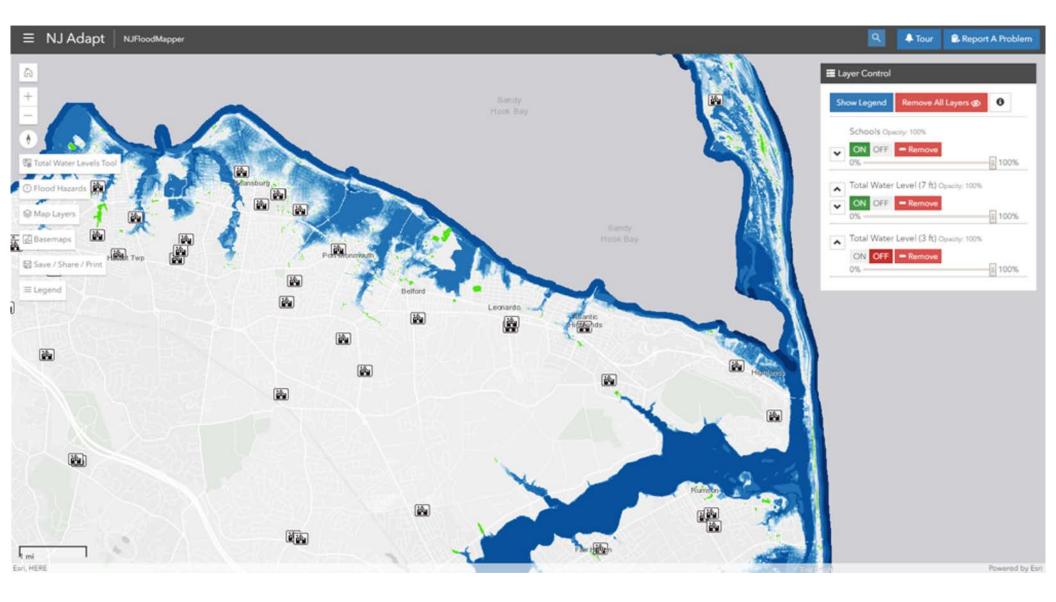
From Miller et al., 2019, "Extreme Coastal Water Level in Washington State: Guidelines to Support Sea Level Rise Planning"

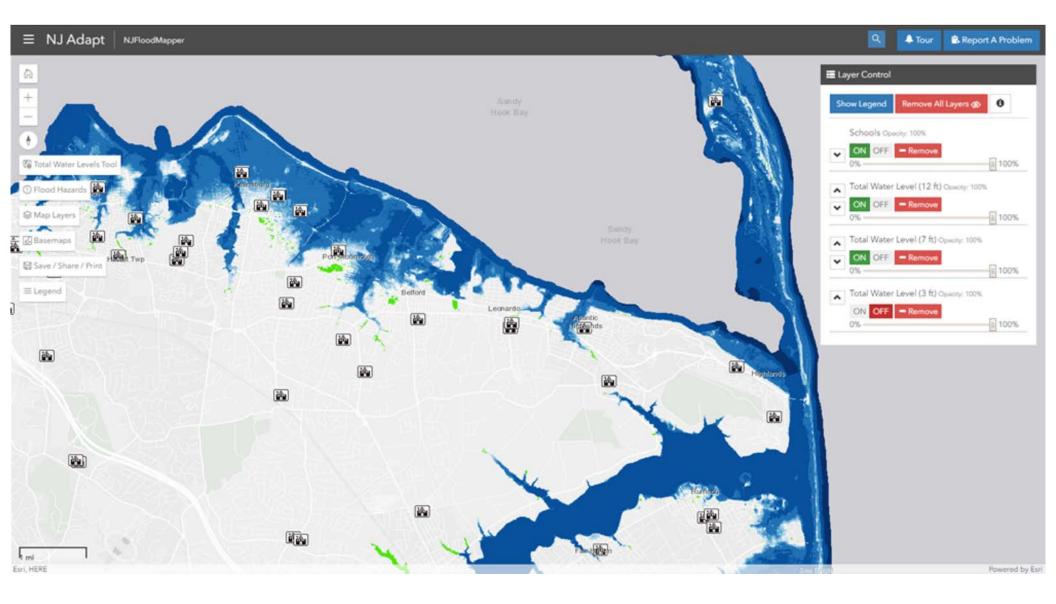
Website with data and resources: http://www.wacoastalnetwork.com/


Share your thoughts on how to improve this website!

Join the Coastal Hazards Resilience Network listserv or become a member!



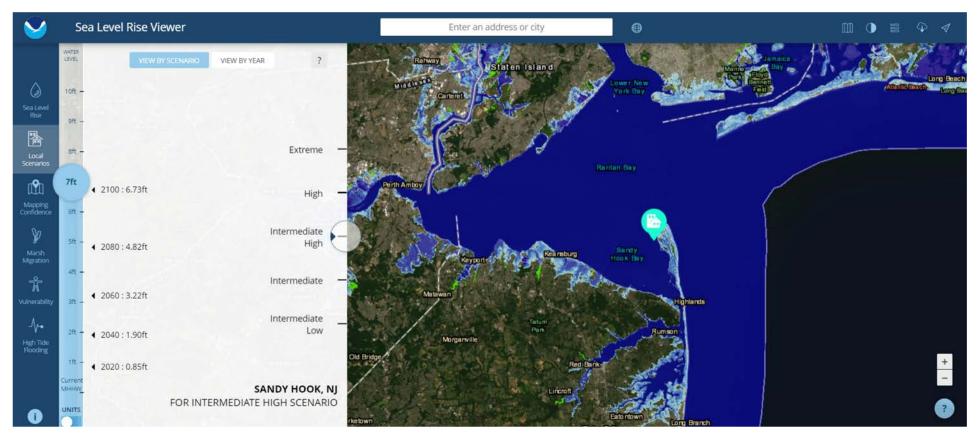

How will sea-level change impact flooding in our community?


Matt Campo, Rutgers

Source: Wikipedia

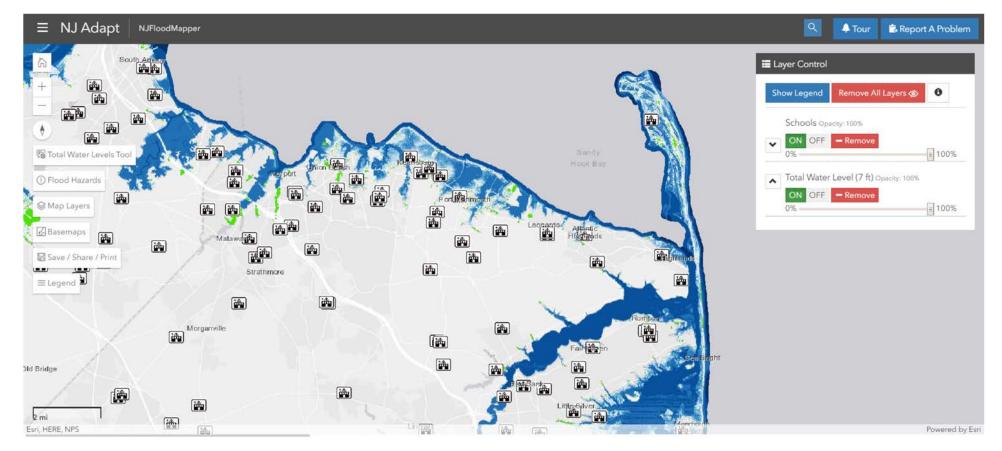
What tools are available?

Matt Campo, Rutgers Nicole Faghin, Washington Sea Grant


Do I have the right tool for the job?

What tools do you use?

Share them in the comment box for the webinar as we're speaking!


We'll compile the list of hyperlinks and pass along to attendees.

NOAA Sea Level Rise Viewer

https://coast.noaa.gov/slr/#

Exposure Tools

Home Page | NJFloodMapper

Coastal Storm Modeling System COSMOS

http://data.pointblue.org/apps/ocof/cms/index.php?page=flood-map

NEXT IN THE SERIES....

TOPIC: Integrating SLR Projections into plans

DATE: May 8, 2020

Contact Information

Matt Campo, Senior Research Specialist, Rutgers mcampo@ejb.rutgers.edu

Nicole Faghin, Coastal Management Specialist Washington Sea Grant faghin@uw.edu