APA APA Transportation Planning Division Webinar

State Large MPO Medium MPC Moderator

Background

Perspectives on Resiliency Planning

#9202462 CM | 1.50

August 14, 2020

Moderator

100 years ago, the focus of transportation planning was construction – to "get the farmer out of the mud".

50 years ago, the focus of planning was efficiency for cars – to complete the transportation system and increase speeds and throughput.

Today we recognize the need for a wider scope of transportation planning in many areas, including vulnerability & resilience.

Vulnerability is how we're at risk. Resilience is our ability to absorb shocks gracefully. National Federal-Aid Highway Program Performance Goals

Safety – Directly compromised during event and recovery Infrastructure Condition – Directly compromised during event and recovery Congestion Reduction – Possible congestion during evacuations

and during recovery if infrastructure is out of service System Reliability – Directly compromised during event and recovery

Freight Movement & Economic Vitality – Directly compromised during event and recovery

Moderator

<u>Medium MP</u>

rge MP

State

Environmental Sustainability – Possibly compromised by loss of infrastructure and need for clean-up

Reduced Project Delivery Delays – Possibly compromised by project re-prioritization, changed budgets, and need for clean-up

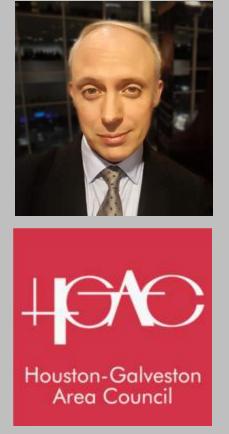
State Large MPO Medium MPO

Austin, Texas

BS Arch University of Texas at Austin MSCRP University of Texas at Austin Charlie Sullivan, AICP, is a senior planner at CDM Smith. He has 30 years of experience in transportation planning and travel demand modeling in the public sector and as a consultant.

His body of planning work includes Metropolitan Transportation Plans, Corridor Plans, Thoroughfare Plans, Transit Asset Management Plans, Public Participation Plans, and Vulnerability & Resilience Plans. On the travel demand modeling side, he has been involved in model data development, validation, and applications for models at all scales ranging from the first-ever models for smaller communities in Arizona to the first-ever statewide model for Texas.

Belton, Texas


State

0

La

BS Community Health Texas A&M University MBA – University of Mary Hardin-Baylor Kendra Coufal is the Manager of Planning Services at the Killeen Temple Metropolitan Planning Organization (KTMPO), a mid-size MPO with a fouryear TIP distribution of \$152 million for mobility and livability projects in an area that encompasses 1,200 square miles and includes 3 counties and 14 incorporated cities.

Kendra helps set the strategic direction of the department. Her responsibilities include overseeing planning staff, contract management, updating and maintaining the UPWP, short and longrange transportation planning and development, serving as a liaison between the MPO and other agencies/departments, planning of Technical and Policy Board meetings, special projects and grants management, and public engagement efforts of the KTMPO.

Houston, Texas

MS Watershed Management University of Delaware Justin Bower is a principal planner at the Houston-Galveston Area Council.

He has over 20 years of work experience in natural resource management and planning-related roles. His work experience includes a variety of public, NGO, and private roles involving water quality, municipal water supply planning, watershed management, and natural areas conservation and education. His current efforts with H-GAC focus on multijurisdictional watershed protection, flood management, and natural area conservation projects. He is actively involved in leadership roles with several water, forestry, conservation, and wildlife organizations in the Houston area.

Aedium MP(Moderator Background

Large MPO

Austin, Texas

BS Ocean Engineering Texas A&M University MS Civil Engineering Texas A&M University Bill Knowles, P.E., is the State Traffic Analysis Engineer for the TxDOT Transportation Planning & Programming Division, with 25 years of experience in public sector engineering, planning, environment, and research. His is a retired commander from the US Navy.

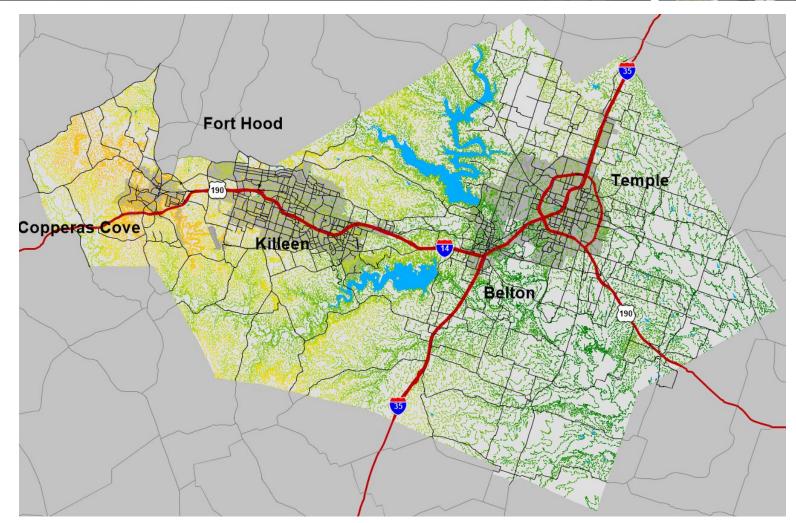
His work at TxDOT includes overseeing traffic forecasting, travel demand model development, travel surveys, and statewide data collection. He also serves as the lead for TxDOT's resiliency planning efforts.

ground

Moderato

ð

State


Bill serves on two TRB Committees. He is the research sub-committee chair of the AHB40 Highway Capacity and Quality of Service Committee, and is a member of the AED10 Statewide and National Data and Information Management Committee.

The Regional Vulnerability & Resilience Framework

Kendra Coufal Manager of Planning Services KTMPO

KILLEEN-TEMPLE METROPOLITAN PLANNING ORGANIZATION

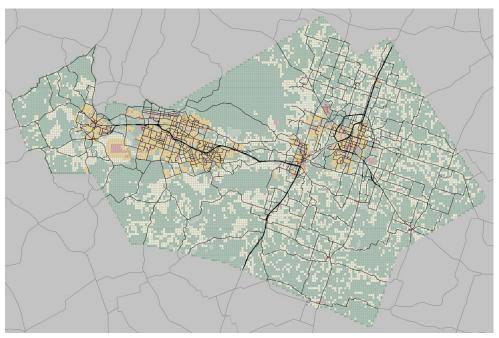
Asset Vulnerability and Resiliency Study

- Central Texas north of Austin
- 3 counties
- 14 incorporated cities and part of Fort Hood

Initial Development of Vulnerability & Resilience Planning at KTMPO

Environment was generally referenced in the project scoring process. This effort was to develop a more formal process to address vulnerability & resilience planning:

Road Track				
1	Congestion 30 points	Obj/Sub		
	Existing LOS	0 to 10 point		
	2040 No-Build LOS	0 to 10 point		
	Change in LOS with the project	0 to 10 points		
2	Traffic 30 points			
	AADT	2 to 20 point		
	Peak period traffic flow	0 to 5 points		
	Network Connectivity	0 to 5 points		
3	Safety 10 points			
	Fatality rate	0 to 5 points		
	Crash rate	0 to 5 points		
4	Linkage to MTP or Other Plan 15 points			
	Coordination with other plans	0 to 15 point		
5	Local Priority & Support 10 points			
	Local priority	1 to 5 points		
	Local support	0 to 5 points		
6	Project Scope 30 points			
	Scope of the benefit	1 to 5 points		
	Planning & Environmental Linkages	0 to 5 points		
	Economic development & freight movement	0 to 5 points		
	Multimodal support	0 to 5 points		
	Security & resilience	0 to 5 points		
	Sustainability	0 to 5 points		

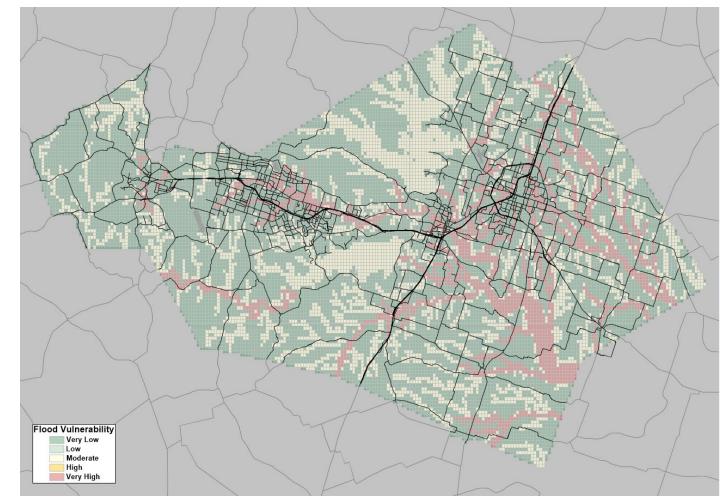

1	Coordination & Service Gaps	40 points	Ob
-	Peak period traffic flow	io pointo	0 to 5 poin
	Eliminates barriers		0 to 15 poir
	Network connectivity		0 to 10 poin
	Addresses a documented need		0 to 10 poir
2	Access to Jobs	15 points	
	Provides access to jobs in the EJCO	DC .	0 to 10 poin
	Provides access to jobs in the regi	on	0 to 5 poin
3	Safety	20 points	
	Provides an exclusive path along an arterial or higher 0 to 5 poir		
	Provides a connection to a school	il	0 to 5 poin
	Enhances areas with identified ha	zards	0 to 5 poin
	Corrects ADA deficiencies	Strand I.	0 to 5 poin
4	Linkage to MTP or Other Plan	15 points	
	Coordination with other plans		0 to 15 poir
5	Local Priority & Support 10 points		
	Local priority		1 to 5 poir
	Local support		0 to 5 poir
6	Project Scope 30 points		
	Scope of the benefit		1 to 5 poin
	Planning & Environmental Linkage	25	0 to 5 poir
	Economic development		0 to 5 poir
	Multimodal support		0 to 5 poir
	Security & resilience		0 to 5 poir
	Sustainability		0 to 5 poin

Gather data in a formal system

- Evaluate against defined stressors
- 3 Integrate results into project planning

4 Support vulnerability & resilience planning

Regional Vulnerability & Resilience Framework

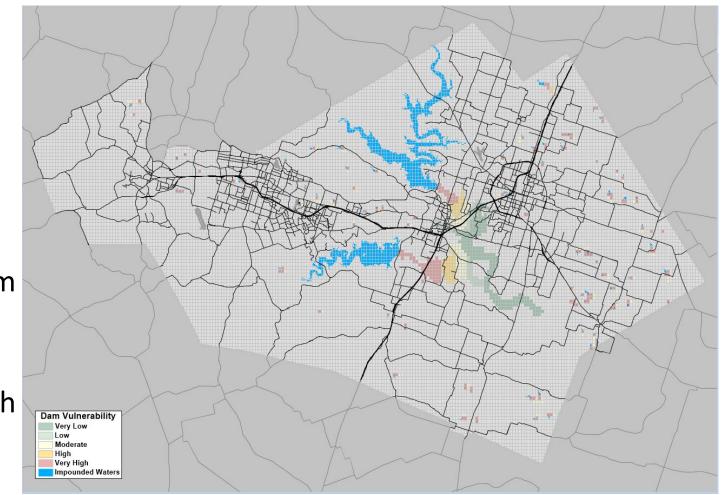


- RVRF defines a ¼ mile grid of the full study area
- Defined four stressors: rainfall, dam breach, wildfire, drought or high temperature
- Data from stressors comes from various sources and must be normalized to a common system and scale
- Developed stressor data, land use data, and critical land uses

The RVRF Grid: Flooding from Rainfall

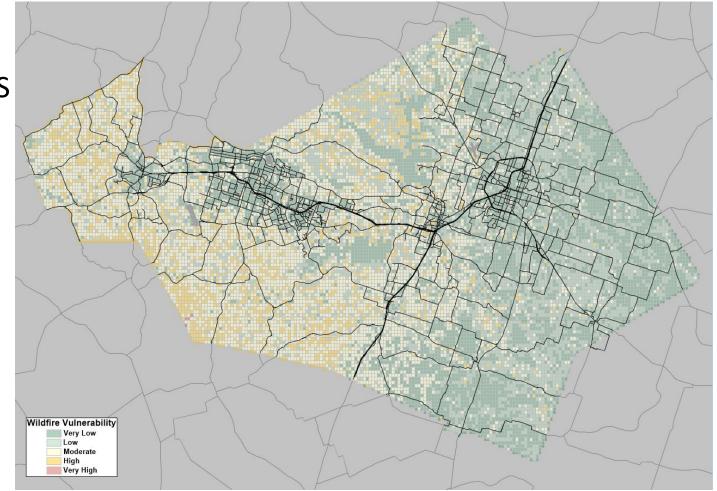
Vulnerability

scores sourced from the FEMA floodplain maps


Asset Vulnerability and Resiliency Study

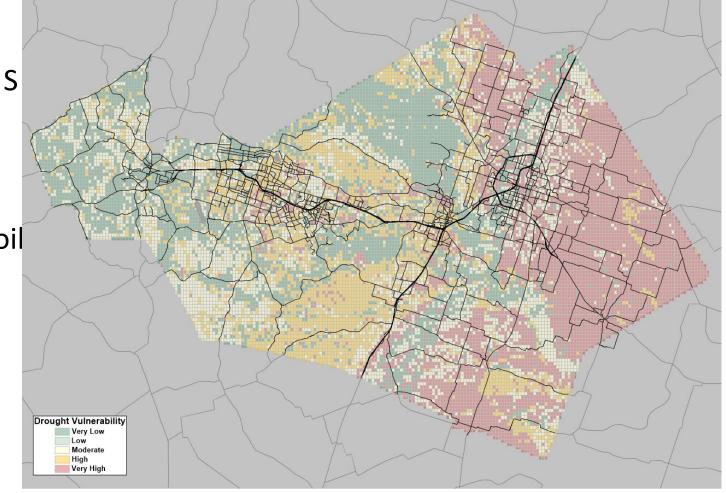
The RVRF Grid: Flooding from Dam Breach

Vulnerability


scores sourced from a review of impounded waters and topology downstream of dams

 99 dams; mostly earth banked

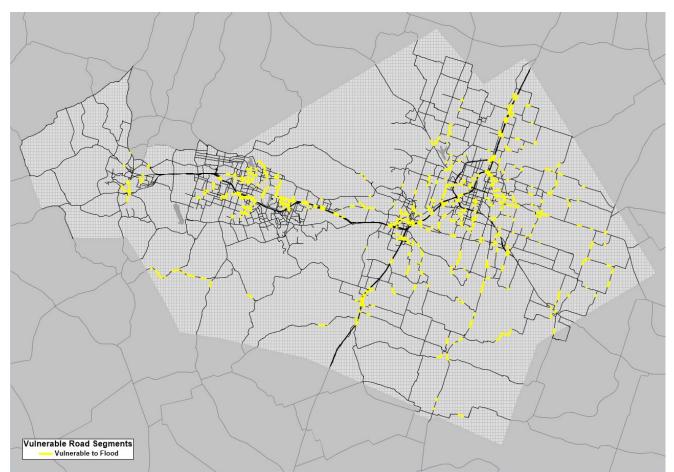
The RVRF Grid: Wildfire


- Vulnerability scores sourced from the U S
 Forest
 Service
 LANDFIRE
 2012
 database
- Based on type of ground cover

Asset Vulnerability and Resiliency Study

The RVRF Grid: Drought or High Temperature

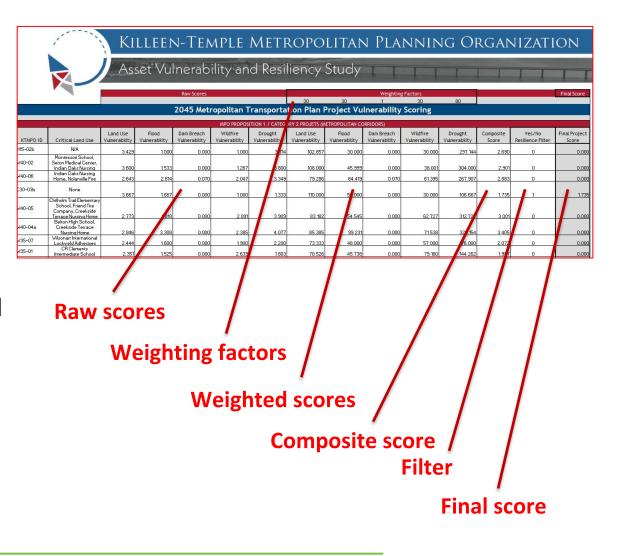
- Vulnerability
 - scores sourced from the U S Geologic Survey Soil Survey
- Based on soil shrink & swell properties


The RVRF Grid: Critical Land Uses

Five types of land use and seven types of critical land uses defined mostly by a review of aerial imagery

The RVRF Grid: Vulnerable Road Segments

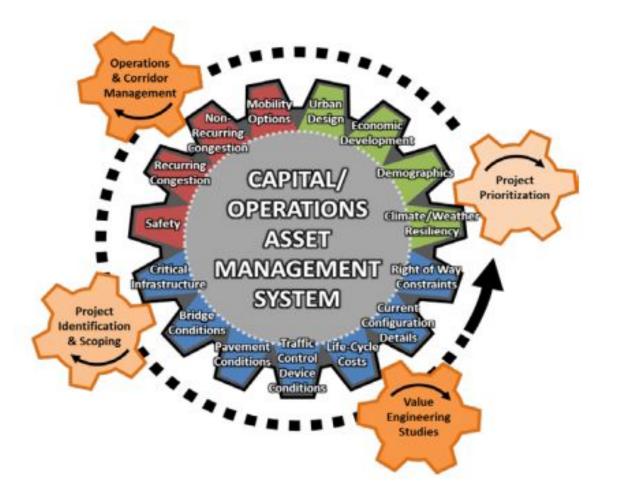
The RVRF grid
 scores are
 applied to the
 network to
 define
 vulnerable
 road segments
 for each type
 of stressor



The RVRF Scoring Spreadsheet

 The RVRF Scoring spreadsheet is formatted to match the Project Listing spreadsheet

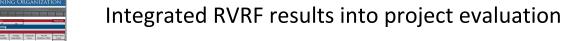
Asset Vulnerability and Resiliency Study


- Has weighting values for each stressor and land use
- Final composite scores are normalized to a 1-5 scale for input to the project scoring spreadsheet
- Final filter identifies projects which contribute to resiliency

Asset Vulnerability and Resiliency Study

Next Steps: Integration into the Planning Process

 Precedent from NCTCOG shows how vulnerability & resilience planning fits into overall regional planning



Summary

KTMPO has completed our first steps in the development of a regional framework for vulnerability & resilience planning, and we are defining our next steps to mature our process.

Developed a GIS and grid to gather & define data for use

Exploring next steps of more fully integrating RVRF results into the full planning process

Planning for Resiliency in the Houston Galveston Region

Justin Bower Principal Planner Community and Environmental Planning

h-gac.com

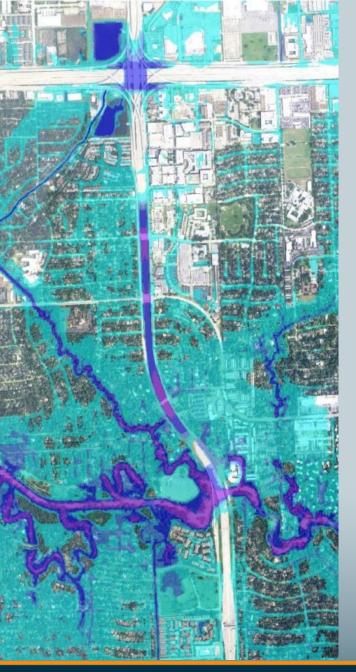
Serving Today • Planning for Tomorrow

MPO at a Glance

- MPA/TMA 8,800 square miles (Region is 12,000+ sq. miles)
- 6.7 million people; add another 4 million+ by 2045.
- 2021-2024 TIP identifies over \$9.7 billion in transportation investment; \$1.2 billion programmed by H-GAC / TPC and TIP

Regional Resiliency Challenges

- Number, variety of jurisdictions; equity issues
- Unique vulnerability to storm events
 - · Lowlying, coastal, high rainfall
 - High impervious cover and soils
 - Industry, transportation corridors, dense populations in highly affected areas
 - Aging infrastructure
- Growth impacts continue



Coordinating Resilience Planning

- Existing coordination/roles serves as foundation (TPC, NRAC, RFMC, etc.)
- Formal Region Resilience Pilot
 Program for transportation
- Informal adjacent "spheres"
 - Economic/Growth planning
 - Environmental planning (quality, supply conservation)
 - Community/quality of life
 - Public safety/services
 - Disaster mitigation

Region Resilience Pilot Program

• FHWA grant funded (2018) with TxDOT, draft submitted July 2020.

Goals to:

- Measure criticality/vulnerability of regional transportation assets
- Develop recommendations for more resilient network to govts.
- Use analyses to inform future decision/project selection criteria
- Focus on major roads/bridges and flooding/surge/sea level rise.

STORMWATER MANAGEMENT

- 1.Increase Number of Swales & Ditches
- 2.Retention & Detention Ponds
- 3.Depressed & Raised Medians
- 4. Bioswales (Biofiltration Swales)
- 5.Green Infrastructure

MAINTENANCE

6.Culvert Cleaning & Maintenance

PLANNING/SOCIAL

7.Stormwater Management Plan
8.Land Use Planning/ Climate Justice
9.Relocate or Abandon Roads
10.Shelter-In-Place
11.Evacuation Route Identification & Planning
12.Prohibiting Overweight/ Oversize Vehicles
13.Sensor Technologies & Monitoring Programs

INFRASTRUCTURE

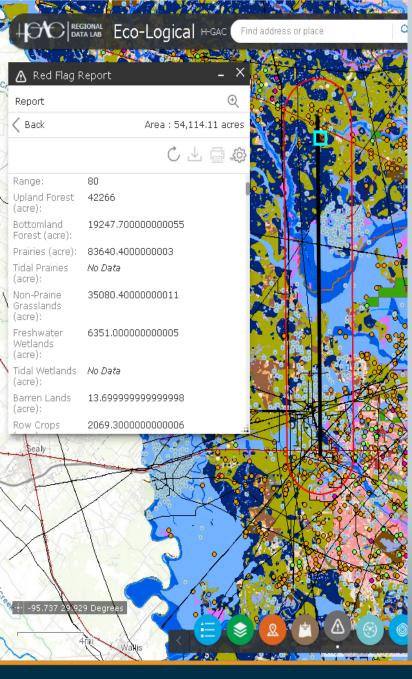
- 14.Enhanced Road Surface
- 15.Enhanced Sub-Grade
- 16.Hardened Shoulders
- 17.Raised Road Profile
- 18.Geosynthetics/ Geo Textiles
- 19.Permeable Pavement

OTHER

20.Maintain & Restore Wetlands 21.Beach Nourishment & Dune Restoration 22.Vegetation (as Erosion Control) 23.Seawalls & Revetments 24.Wave Attenuation Devices 25.Debris Deflectors for Bridge Protection

Region Resilience Key Findings

- Out of 762 freeway miles, and 6,440 major road miles:
 - 12%/9% were highly Critical
 - 13%/12% highly Vulnerable
 - Where intersect, priority lies
 - Built into online Tool with modeled flood exposure depth.
- Strategies in categories, including stormwater management, maintenance, planning/social, infrastructure, and Other (natural function, etc.)
- Findings will influence TIP, other.


Serving Today • Planning for Tomorrow

Embracing the Adjacent

- Regional resilience needs, opportunities far greater than transportation.
- Our future requires a direct commitment on intersectionality of planning spheres.
- Case Studies
 - EcoLogical– Environmental impact assessment of potential transportation projects
 - Livable Centers- transitresponsive planning for enhancing community quality of life

Case Study EcoLogical

- Multidisciplinary planning team
- Online GIS tool to assess environmental impact of usedefined transportation projects (land cover impacted, red flags)
- Will be part of transportation project submission
- Usable by other planning efforts, partners <u>https://datalab.h-</u> gac.com/EcologicalGIS/)

Case Study-Livable Centers

- Ongoing community planning program to design areas that are walkable, have multimodal transportation, and enhance "Live/Work/Play" (transportation funde)d
- Airline Using LID and turning movement controls to enhance area
- Westchase- Roadway development to include green infrastructure elements
- Mont Belvieu- green infrastructure for traffic and flooding management.

Contact:

Justin Bower Principal Planner Houston Galveston Area Council

713-499-6653 justin.bower@hgac.com linkedin.com/in/jmbower/

TxDOT Resiliency Planning

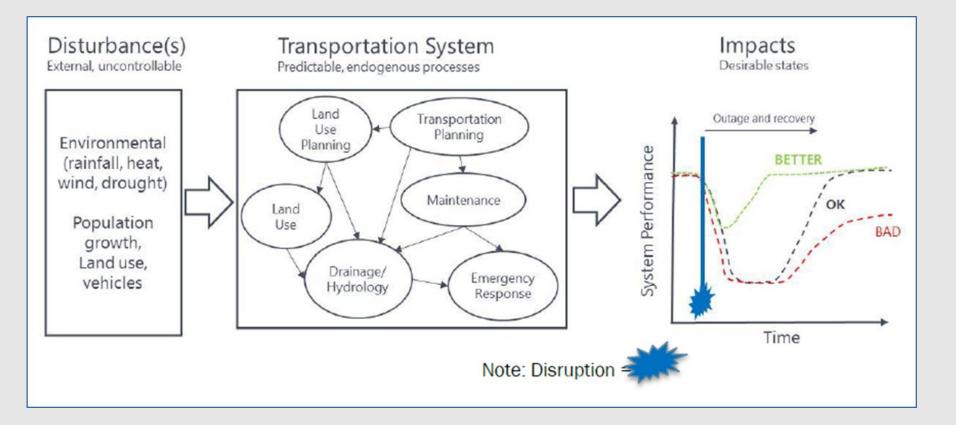
Bill Knowles, P.E., TxDOT

August 14, 2020

Texas Department of Transportation Resiliency Planning

OVERVIEW

- 2018 Published "Developing a Resilient Texas Transportation System"
- 2019 Held Statewide Resiliency Stakeholder Workshop
- 2020 Initiated Resiliency Research


FAST Act

- 2015 Fixing America's Surface Transportation (FAST) Act requires:
 - State transportation agencies to address resiliency in their transportation planning processes
 - To develop a Transportation Asset Management Plan (TAMP) that integrates climate change and extreme weather event resilience approaches into transportation asset management
- How transportation agencies address these requirements is generally left up to the individual agencies

Steps to develop a framework for ensuring a resilient transportation system that meet FAST Act resiliency requirements:

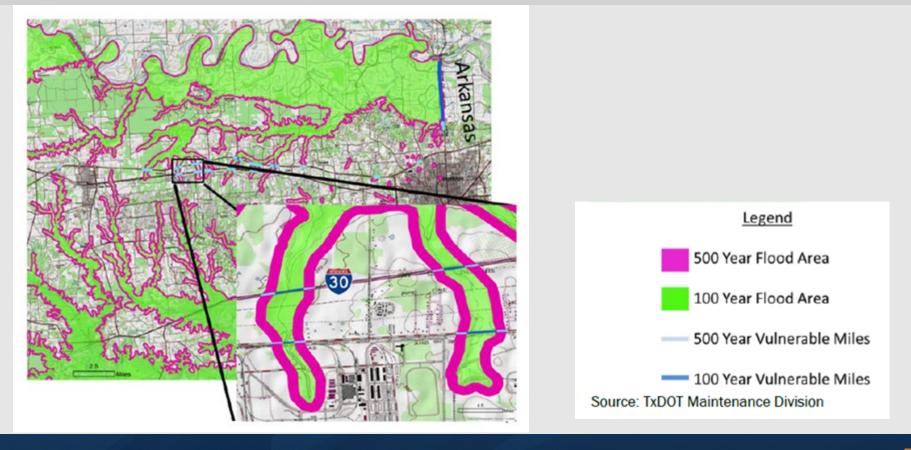
- 1. Define resiliency for Texas' transportation system
- 2. Identify the resiliency goals and objective for Texas' transportation system
- 3. Identify resiliency performance measures
- 4. Assign roles and responsibilities
- 5. Assess the vulnerability of Texas' transportation system
- 6. Assess/quantify adaption, mitigation, and recovery options

Resilient Transportation System – Framework Document November 2018

TxDOT Resiliency Planning – American Planning Association (APA)

Assess Vulnerability of Texas' Transportation System

This step requires the following tasks:


- 1. Identify and characterize extreme weather events of concern
- 2. Determine the risks/likelihood of the extreme weather events occurring
- 3. Identify vulnerable transportation systems elements
- 4. Determine the potential impact of the extreme weather event if occurring
- 5. Identify the critical transportation assets

Identify Vulnerable Transportation System Elements

- Overlay extreme weather risk data with transportation system assets to:
 - Assess the transportation system's exposure to extreme weather events
 - Identify vulnerable system elements
- Objective to determine which assets have the potential of being severely impacted by the event (i.e. failure)
 - Asset age
 - Asset condition
 - Asset functional attributes (e.g. elevation in the case of flooding)
 - Severity of the event

Example Federal Emergency Management Agency Floodplain Map

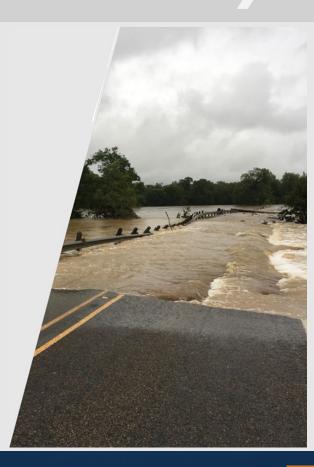
TxDOT Resiliency Planning – American Planning Association (APA)

Identify Critical Transportation Assets

Once the critical transportation assets have been identified, the vulnerable critical system elements can be identified, using criteria such as:

- Redundancy
- Level of use (current and future) or critical commerce or commuter corridors
- Functional classification
- Replacement cost
- Element of the Texas multimodal network
- Evacuation routes

TxDOT Resiliency Planning – American Planning Association (APA)



TxDOT Research Project Statement 21-090

Title: "Establish TxDOT Transportation Resilience Planning Scorecard and Best Practices"

The impact of Hurricane Harvey in 2017 accelerated TxDOT's resiliency efforts regarding the need to improve the resilience of the transportation infrastructure in Texas.

Future scenarios of extreme weather events in Texas will have significant impacts on highway infrastructure.

Hurricane Harvey Impact Summary

- Over 60 inches rainfall in Houston/Beaumont area
- Estimated 13 million people were affected
- \$125 billion (2017 dollars) in estimated damage Ranks as the second costliest hurricane to hit the U.S. mainland since 1900
- Floodwaters inundated major roads: IH-10, IH-45, and US-59
- Some roads and bridges were completely washed away, while in other areas, high water flows caused significant bridge scouring

Technical Objectives:

- 1. Examine vulnerability in the state highway network
- 2. Establish a resilience scorecard for integrating hazard mitigation and resiliency into local and regional transportation plans, and evaluate the level of integration among transportation planning and other plans related to flood risk management and hazard mitigation
- 3. Establish resilience best practices and measures for integrating resiliency in TxDOT highway infrastructure planning

Six Major Tasks

- 1. Conduct a statewide survey of all stakeholders for highway resilience needs and gaps
- 2. Conduct a statewide vulnerability analysis on highway infrastructure networks to identify critical and vulnerable assets
- 3. Develop and test a transportation resilience scorecard to evaluate the vulnerability, risk, and value of transportation assets to be used in the project development process

Six Major Tasks (cont.)

- 4. Develop guidelines and performance measures for TxDOT highway resilience
- 5. Develop guidebook for TxDOT highway resilience planning using the scorecard
- 6. Implement resilience education through workshops

Resilience Planning – American Planning Association (APA)

Deliverables

- Technical guide for implementation of highway resilience best practices and measures for transportation planning
- A transportation resilience scorecard tool for evaluation of local and regional transportation plans
- Technology transfer and education through workshops for state, municipal, and MPO transportation planners and engineers

Summary

- Build a more resilient transportation system
- To incorporate resiliency into TxDOT's Planning Process
- Addresses FAST Act requirements
- Aligns with TxDOT's Goals:
 - Deliver the Right Projects 🗸
 - Focus on the Customer \checkmark
 - Foster Stewardship 🗸
 - Optimize System Performance 🗸
 - Preserve our Assets 🗸
 - Promote Safety
 - Value our Employees 🗸

THANK YOU

Charlie Sullivan, AICP Senior Transportation Planner, CDM Smith

SullivanC@cdmsmith.com

Kendra Coufal

Planning Services Manager, Killeen-Temple Metropolitan Planning Organization

Kendra.Coufal@ctcog.org

Justin Bower Principal Planner, Houston-Galveston Area Council Justin.Bower@h-gac.com

Bill Knowles, P.E. TxDOT State Traffic Analysis Engineer Bill.Knowles@txdot.gov