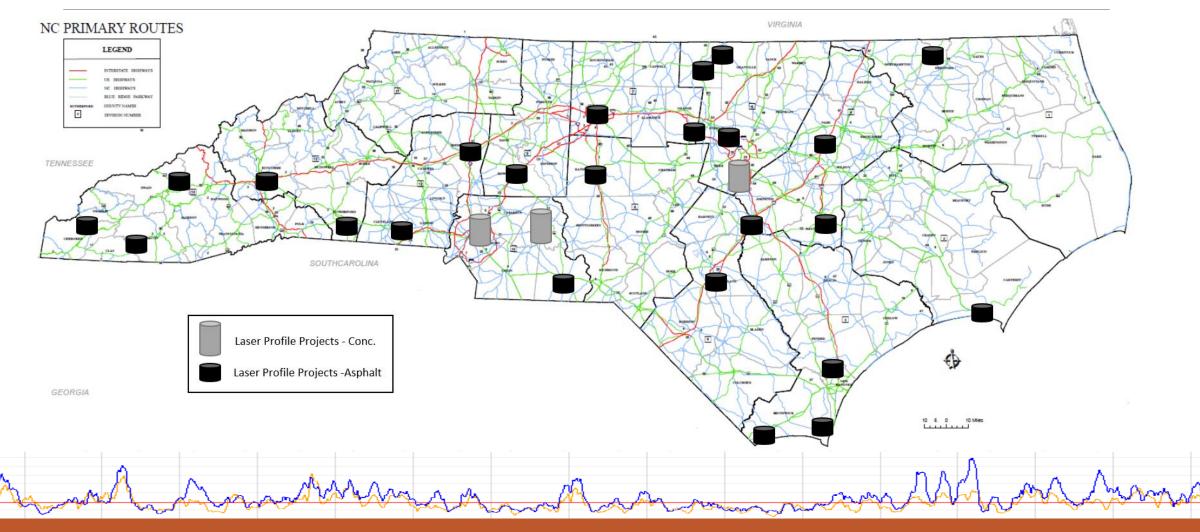
Roadway Profile Testing in North Carolina

PAST PERFORMANCE AND LESSONS LEARNED PRESENTED BY CHRISTOPHER BACCHI, TRIMAT MATERIALS TESTING, INC AND NILESH SURTI, NCDOT


Why is Pavement Smoothness Important?

- Pavement Smoothness is important to the User (taxpayer, driver, etc.) Research has shown that smoothness is the primary variable used by the public to judge the quality of roadways
- Smoother roads last longer NCHRP, FHWA and NAPA research on newly constructed pavements
- Smoother roads are safer increased roughness results in higher friction loss
- Smoother roads save money lower fuel consumption and less maintenance costs for users

Definitions

- Inertial Profiler Device that utilizes an accelerometer to measure accelerations, a laser transducer to measure distance (or height), and DMI (or GPS) to measure longitudinal distance
- International Roughness Index (IRI) A mathematic transformation of a true road profile presented in units of slope (in/mi). (80's, NCHRP, World Bank)
- Mean Roughness Index (MRI) Average of two wheelpath IRI measurement
- <u>Localized Roughness (LR)</u> Isolated areas of roughness, which by themselves can cause a significant increase in the overall reported smoothness index.
 - LR is a constant moving average of the IRI and indicates what the overall section IRI will be

Some Projects In NC

Project and Mix Types Where IRI has been Performed

- All surface mix type, S9.5B, 9.5C, etc
- Open Graded Friction Courses (avg. < 45 in/mi)
- Concrete diamond ground and plain
- Binder mixes (when final lift is placed in one lift)
- SR Routes where 2 lifts of asphalt are placed
- Interstates
- NC Routes
- US Routes
- Airports (PI)
- Federal Roadways
- Bridges (<100 in/mi)

NCDOT Specification Review

- Where is Final Surface Testing (FST) required?
- Required on **Asphalt Pavement** when:
 - 2 or more lifts of asphalt
 - Speed limit is > 45 mph
 - Map length is > 1 mile
 - Contractor still has the option to do HEARNE Straightedge!
 - Intent is on Mainline Pavement including AUX and CD travel lanes only!
 - NOT REQUIRED:
 - SR routes
 - Where it is **NOT PRACTICAL! Examples:** Pre-existing subgrade conditions like soft soils or alligator cracking, multiple driveways, Y-lines, crossovers, number of utilities.

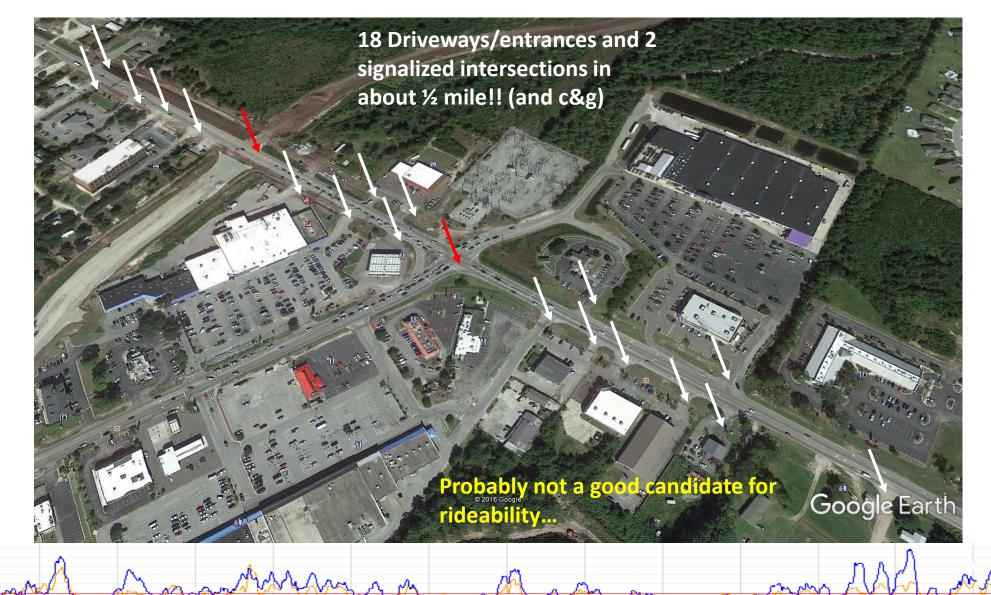
NCDOT Specification Review

- Where is Final Surface Testing (FST) required?
 - Required on **Concrete Pavement** when:
 - New concrete pavement
 - Mainline + Auxiliary + Collector/Distributor travel lanes
 - Diamond ground concrete pavement SP shows that IRI testing needs to be done

NCDOT Specification Review (cont.)

- Same spec for concrete and asphalt with the exception of Hearne
- ProVAL is the free program used to analyze the data
- Smoothness numbers for every 528-ft (0.10 mile) in Table 610-7
- MRI is average of IRI numbers in both wheelpaths

TABLE 610-7 MRI PRICE ADJUSTMENT PER 0.10-MILE SECTION					
MRI after Completion	Price Adjustment Per Lane				
(Inches Per Mile)	(0.10-Mile Section)				
45.0 and Under	\$200.00				
45.1-55.0	PA = 600 - (10 * MRI)				
55.1-70.0	Acceptable (No Pay Adjustment)				
70.1-90.0	PA = 650 - (10 * MRI)				
Over 90.1	Corrective Action Required				


NCDOT Specification Review (cont.)

- Same spec for concrete and asphalt with the exception of Hearne
- Localized roughness
 - Checking for "bumps in 25-ft sections"
 - Program checks along the entire roadway in 25-ft continuous sections
 - Identifies all bumps where smoothness number is **165 in/mile or greater**
 - This is a separate report in ProVAL called the "SAM" report
 - Consultant will submit these results in their FINAL REPORT
 - Contractor MUST discuss corrective action with RE
 - RE will approve locations that need corrective action
 - RE will apply Pay Adjustment on non-corrective action locations as necessary using the formula (LR = (165-LR)*5) provided in the Asphalt Superpave Special Provision

Process for IRI Testing - Contractor

- Confirms testing is required (spec. review)
- Reviews feasibility on all project roadways
 - Y-line case by case basis
 - Ramps, Loops, transitions not to be tested!
- <u>Discusses any concerns with NCDOT Important</u>
- Submit Plans and or KML files to profiler
- May perform internal QC on ride quality on initial lifts (binder or surface)
 - Use Hearne
 - "Seat of Pants"
 - Schedule preliminary IRI testing for informational purposes
- Repair areas with high Localized Roughness Corrective Action (discuss later)
- Run Final Surface test

Some Considerations.....

Some Considerations.....

MANAR

4 Intersections, 3 Bridges, numerous lane drops and adds, and a 180 degree turn in less than 1 mile

a good candidate for

Google Earth

Process for IRI Testing – NCDOT

- Confirm with Contractor that testing is required (spec. review)
- Reviews feasibility on all project roadways
 - Y-lines, Ramps, Loops, CD lanes, transitions, curb and gutter, short sections
- Ride the Roadway and use "seat of pants" judgment as a start and note concerns
- Ensure NCDOT is aware of date of testing and onsite during testing
- Receive raw test results when testing is complete (thumb drive)
- RE receives final report from Contractor

Process for IRI Testing – NCDOT (cont)

- Submit report and raw data to Pavement Management
- NCDOT Resident and Pavement Management (PMU) review report
- PMU will run ProVal on raw data and compare results to Contractor submitted final report
- Resident will verify incentive/disincentives
- Resident will verify "corrective action" locations
- Meeting with Contractor to discuss corrective action locations
- Contractor will propose corrective action measures
- <u>Resident must approve all locations that need corrective action and</u> <u>corrective action repair methods!</u>

Process for IRI Testing – NCDOT and Contractor

- Contractor performs corrective action (grinding, mill and fill, etc.)
- IRI is re-run on corrected sections
- If action is unsuccessful, Resident will decide on pay adjustment or require additional corrective action to be taken
 - Formula: PA = (165-LR) x 5
- Resident determines final pay adjustment

Process for IRI Testing – NCDOT (cont)

	• Samp	le report,	MRI tabl	es: LWP IRI	RWP IRI		Calc Based on 610-7	Any visible
Reference				ODS 1 (RoLine3K) -	ODS 2 (RoLine3K) -	Avg or MRI	Incentive/	anomalies
Station	Start Sta.	Stop Sta. (ft)	Length (ft)	IRI (in/mi)	IRI (in/mi)	MRI, (in/mi)	Disincentive	Comments
Project	0	528	528	131.67	116.88	124.28	Corr Action Req	Single Lift
Stations – if	528	1056	528	93.55	78.60	86.08	\$ (210.76)	Water Valve
	1056	1584	528	104.49	112.56	108.52	Corr Action Req	
plans and	1584	2112	528	109.63	91.80	100.72	Corr Action Req	Old Intersection
KML files	2112	2640	528	66.35	54.12	60.24	No Pay Adj	
are	2640	3168	528	64.65	51.03	57.84	No Pay Adj	
provided!	³¹ Start	and ⁶	528	61.00	49.70	55.35	No Pay Adj	
	36	4	528	61.47	63.72	62.60	No Pay Adj	
	42 Stop	2	528	51.30	70.04	60.67	No Pay Adj	
	47 static	ons – _{lo}	528	66.84	49.55	58.20	No Pay Adj	Culvert
	52 Not P	Project 8	528	58.72	57.95	58.34	No Pay Adj	
	58 Static	ons! 6	528	67.76	67.66	67.71	No Pay Adj	Intersection
	63 <mark>36</mark>	6750	414	70.23	74.72	72.48	\$ (74.75)	Intersection
					AVG	G 74.85	\$ (285.52)	

Marian

Process for IRI Testing – NCDOT (cont)

• Sample report, LR tables:

IR LR

	0				
	WB Lane 1 LWP	Wheelpath	Description		
5:	Start Distance (ft)	Stop Distance (II)	Distance (ft)	IRI (in/mi)	Comments
	2082	2116	34	238.51	Sta 92+50 LLT
	WB Lane 1 RWP				
Start and	Start Distance (ft)	Stop Distance (ft)	Distance (ft)	IRI (in/mi)	Comments
Stop	3727	3754	26	210.47	Sta 69+00 LMED
•	4278	4300	22	177.34	Sta 65+50 LMED
stations –	516	546	31	190.06	Sta 50+00 LMED
Not Project Stations!	WB Lane 2 LWP				
Stations:	Start Distance (ft)	Stop Distance (ft)	Distance (ft)	IRI (in/mi)	Project
	none				
	WB Lane 2 RWP				Stations and/or
	Start Distance (ft)	Stop Dista	h of localized	IRI (in/mi)	anomalies
	none		h of localized		
	WB Lane 3 LWP	rough	ness		
	Start Distance (ft)	Stop Distance (ft)	Distance (ft)	📕 IRI (in/mi)	Comments
	none				
I values for					
R section	WB Lane 3 RWP				
	Start Distance (ft)	Stop Distance (ft)	Distance (ft)	IRI (in/mi)	Comments
	none				
man	Monthas	Anon	where	Why war	RPC BRA

Google Earth file - KML

Current Issues Going Forward

- Current NCDOT certification and calibration (?)
- Elimination of curb and gutter sections
- Percent improvement spec for re-surfacing

Lessons Learned

- Not a lot experience with IRI across the state
- Understanding of raw data limitations
- Corrective action is difficult when LR is below 200 in/mi
- Some projects apply IRI specification blindly