RESURFACING TREATMENT SELECTION

Averette Moore, Britt McCurry, PE

Planning

- Pavement Condition Survey (PCS) scores as a starting point
- Visual inspection
 - Verify that the PCS score is an accurate representation of the existing condition
 - Determine the percent of pavement distress
 - · Determine if additional structure is needed
- Maintenance issues that are historically a problem:
 - Potholes
 - Continuous patching
 - · Hydroplane issues from wheel path rutting

Selection

Treatment Options:

- Hot Mix Resurfacing
 - Mill-fill
 - Patching/overlay
- Pavement Preservation
 - Chip Seal
 - Slurry Seal
 - Fog Seal
 - Sand Seal
 - Cape Seal

Selection

- Right road, right treatment, right time
- PCS data
- Budgeting within funding sources
- Not necessarily worst first approach

ROUTE	DIR	BEGIN MILE POST	BEGIN DESCRIPTION	END MILE POST	END DESCRIPTION	SCTN LNGTH	T	PVMN WI	T.		R WI	C / G	YEAR RESF	ТН	S / R	ADT		LIGA	TOR 1 S	LIG	Acceptance of the control of the con	R CRK		T R V		R U T	R A V	C X E	1	B L E		R I D	P A T
49001901		0	NC 62	1.36	BRIDGE	1.36	P	24	2	U	4	N	1993	1	R	3200	6	2 2	9				L		L	1	N	S	- 1	1	L	-	L
40001001		1.36	BRIDGE	2.35	SR 1581	0.99	P	24	2	U	4	N	1993	1	R	3200	7	2 1	0				N		L	- 1	N	S	·		L		
40001001		2.35	SR 1581	3.81	SR 1754	1.46	P	20	2	U	4	N	1992	1	R	3200	3	5 2	9 9				L		L	_ ,	H	N		1	L	-	A
40001001		3.81	SR 1754	4.93	SR 1902	1.12	Р	20	2	U	4	N	1992	1	R	3000	2	8 6	0	 			L		L	_ '	· _	N	N	ı _	L	_	-

Selection

Tools used to determine treatments

PCS as baseline

- Set a score threshold for each treatment type
- Use PMS data to help aid decision making (PCS ratings are not law)
- RMIP data of pipe replacements and shoulder grading can be used to determine if necessary repairs have been completed before the selection of a roadway

Visual assessment

 Verify that PCS is accurate representation of condition and that the treatment is correct

Pavement Conditions

- From plan to selection – visual input and assessment
- Existing conditions and pavement distresses
- Grouping

Alligator Cracking (Patch and Overlay)

Alligator Cracking (Mill/Fill)

Pavement Conditions

- Alligator cracking
 - Dry, brittle pavement
 - Load related
 - Set threshold to determine full depth patch or mill-fill
- Block cracking / Transverse cracking
 - Reflective Cracking Mitigation
 - Crack seal
 - Mastic Filling AST
 - Fabric/grid materials
 - One year per inch of depth

Pavement Conditions

- Rutting
 - Load related
 - Alligator cracking tends to exist
 - Repairs: micro rut filling, mill-fill, leveling, resurfacing
- Cross slope (Typical section)
 - Loss of typical section
 - Drainage issues
 - Reestablishing typical section requires change in resurfacing depth

Grouping

- Benefits:
 - Less mobilization
 - Quicker and easier to manage for DOT
 - Lower unit cost
 - Enhance project delivery
- 80% proactive / 20% reactive approach
- Section based approach

Grouping

Patch and Overlay

- Typical in subdivisions
- Old, brittle, dry pavement
- Serviceable life of pavement is over
- Depth varies so the milling depth needs to reflect the same variability

Full Depth (Mill-Fill)

- Related to subgrade failure
- Utilization of shallow undercut
- Appropriate milling depth for situation
- Full depth patching is the best approach for repair of a soil base roadway

Pavement Preservation

- Chip seals: Application of emulsified asphalt followed by evenly graded aggregate then rolled
- **Slurry seals**: A mixture of emulsified asphalt, mineral fillers and lime
- Fog seals: application on newly installed chip seals to enhance aggregate retention
- Sand seals: Application of emulsified asphalt followed by fine aggregate
- Cape seals: Application of emulsion asphalt, fine aggregate and various admixtures

Communication

Internal

- Communication between all NCDOT staff involved in the process of contract development and treatment selection is important
- Collaboration between
 Maintenance, Contract
 Development, and Construction
 Unit staff

Communication

External

- Contractors, inspection staff, subcontractors, public
- Pre-Construction meetings
- During construction
- Greater success through the achievement of a common goal

Summary

- Planning: A great plan leads to successful projects
- Selection: Right road, right treatment, right time
- Grouping:
 - 80% Proactive/20% Reactive
 - Faster project delivery
 - Lower unit cost
- Pavement Condition: Correct treatment results in pavement longevity
- **Communication:** Interactions result in less problems, a higher quality product, and lessens the impact on the public

