2024 ANNUAL MHOA CONFERENCE: ADVANCED SEPTIC SYSTEMS UPDATE - PERFORMANCE, CASE STUDIES, MANAGEMENT AND FINANCIAL IMPACT

> November 13, 2024 2:40 PM – 4:30 PM Mass Mutual Center, Springfield, MA

Dr. Alissa Cox University of Rhode Island

Bruce Walton NEWEA I/A Task Force

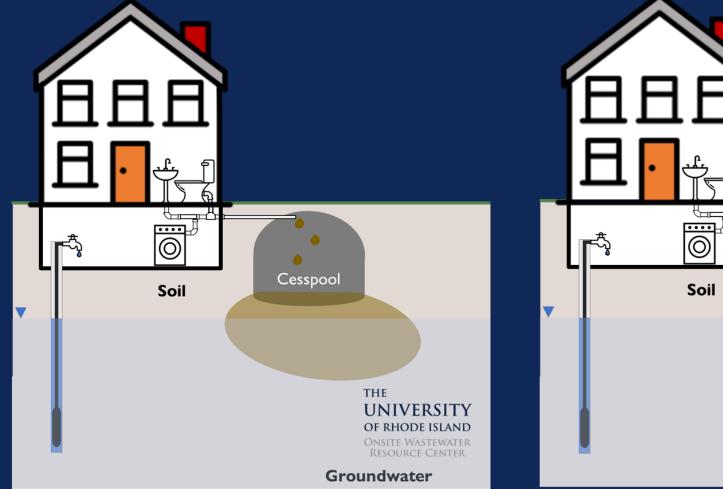
WELCOME!

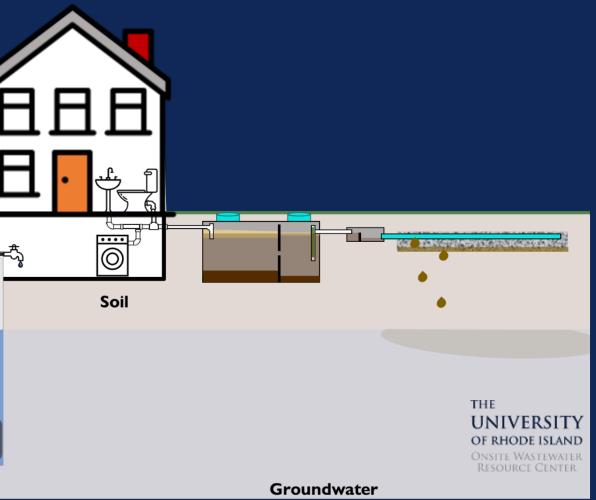
Dr. Laura Erban US EPA ORD

Scott Horsley Water Resources Consultant

David Iorio Izzo RME/SUP

SESSION GOALS


Describe current knowledge of advanced wastewater treatment technologies
 Share findings from ongoing research on enhanced innovative/alternative septic systems
 Share lessons learned: holistic wastewater management at the community scale
 Case studies


- o Managing decentralized infrastructure
- o Financial implications

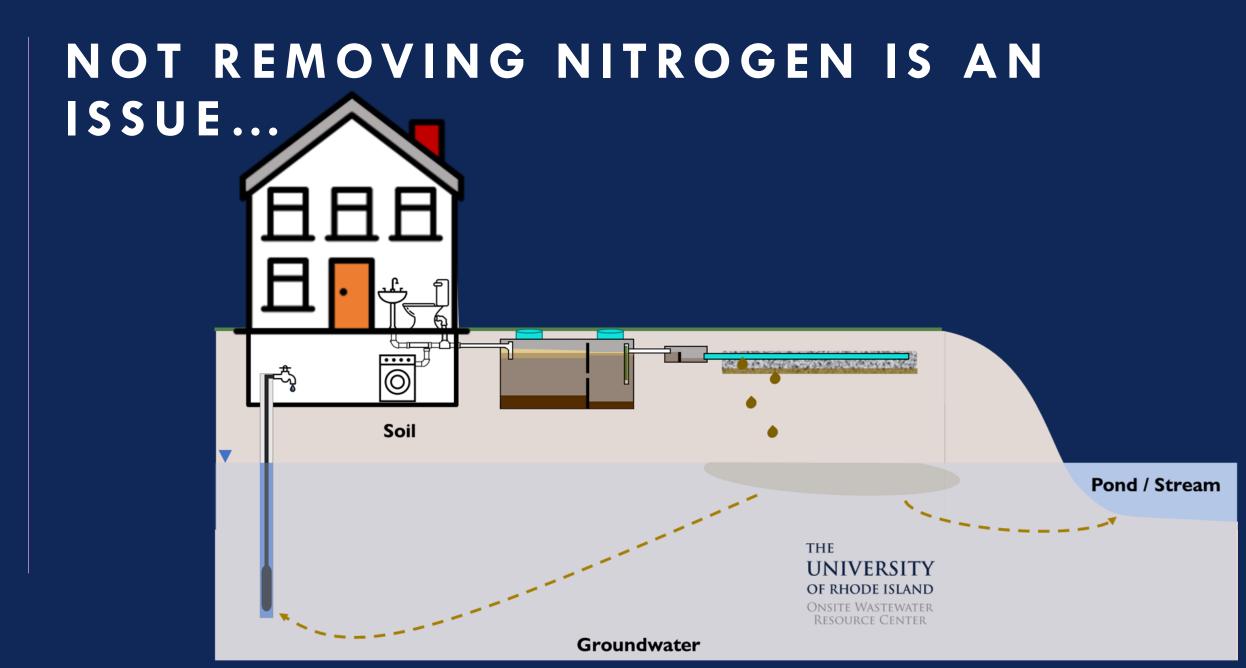
ADVANCED SEPTIC SYSTEMS

Definitions & Current Knowledge

EVOLUTION OF WASTEWATER TREATMENT

HUMAN-GENERATED WASTEWATER IS RICH IN...

Nutrients (Nitrogen & Phosphorus)


Pathogens

Organic materials

Other contaminants

CONVENTIONAL SYSTEMS ARE NOT DESIGNED TO REMOVE NITROGEN

Nitrogen may change forms via chemical conversions, but most remains dissolved in water

CONVENTIONAL SEPTIC SY STEMS ARE POOR CHOICES IN

Nitrogensensitive areas

- Marine ecosystems
- Drinking water sources

Densely populated areas

Sites with many constraints

- Too many wastewater inputs
- Not enough dilution from clean rain/groundwater recharge
- Shallow depth to ledge / water
- Horizontal setbacks

ADVANCED (I/A) WASTEWATER TREATMENT Less impact on

I/A System: 19mg/L N standard

Soil

Groundwater

....

Pond / Stream

water resources

THE UNIVERSITY OF RHODE ISLAND ONSITE WASTEWATER RESOURCE CENTER

PERFORMANCE OF I/A SYSTEMS

- O Currently approved technologies capable of emitting ≤19 mg/L Total N
- o Actual performance in field is variable
 - Long-term performance depends on:
 - o Technology selected
 - o Design & Installation
 - o Use / Flow
 - o Level of system maintenance & monitoring
- Even with variable performance, I/A systems significantly reduce N loading to nearby waters

... WHEN 19MG/L TOTAL N IS STILL TOO MUCH...

o Coastal communities often densely developed

- N loading can be significant
 - OWTS recharge groundwater aquifers
 - o Groundwater discharged to local surface and coastal waters
- o Ground and coastal surface waters affected by too much N
 - o Human health impacts
 - o Impaired ecosystem health
- Better treatment = less loading of pollutants to sensitive waters
 Target: <10 mg/L total N

ENHANCED I/A (EIA) WASTEWATER TREATMENT Even less impact

Enhanced I/A System: <10mg/L N standard

Soil

Groundwater

....

Pond / Stream

on water resources

THE UNIVERSITY OF RHODE ISLAND ONSITE WASTEWATER RESOURCE CENTER

alibba@uri.edu...

NEED TRAINING ON ONSITE WASTEWATER TOPICS?

University of Rhode Island

 New England Onsite Wastewater Training Program

- Field, Classroom and Online Training options year-round
- Ask about custom training!

Approved TCHs for...

- Registered Environmental Health Specialist / Registered Sanitarian (REHS/RS)
- MA Title V Soil Evaluators (SE) and System Inspectors (SI)

JRI > Cooperative Extension > Onsite Wastewater Resource Center > New England Onsite Wastewater Training Program

About Us + Wastewater Professionals + Community + Resources

New England Onsite Wastewater Training Program

Since 1993, the New England Onsite Wastewater Training Program (NEOWTP) has provided classroom and field training for a variety of wastewater professionals throughout New England and Long Island, New York. Each year we train approximately 500 people, providing the latest information about design, installation, inspection and maintenance of conventional and advanced onsite technologies.

Classroom and Field

Are you interested in classroom and

field training opportunities with the

Training

NEOWTP?

Installing & Designing BSFs

Do you want to install and/or design Bottomless Sand Filters in RI and MA? Would you like to complete training to join the NEOWTP Inspector Registry or I&A Service Provider Registry?

Professional Registries

BSF TRAINING REQUIREMENTS

INFORMATION AND REGISTRIES \rightarrow

uri.edu/owt/wastewater-professionals/ or search "URI wastewater training"

EIA TECHNOLOGIES ON THE HORIZON

- Neighborhood-level demonstration pilot project in MA: Dr. Laura Erban
- Holistic wastewater management at the community level – implementation case studies in MA: Scott Horsley
- Managing Septic Systems as Infrastructure: David Iorio Izzo & Brian Baumgaertel
- Financial implications of upgrading existing septic systems to EIAs in MA: Bruce Walton

Q&A opportunities after each section + at end of session ENHANCED I&A SYSTEMS: FIELD PERFORMANCE OF ENHANCED SEPTIC SYSTEMS WITH WOODCHIP BIOREACTORS TO REDUCE NITROGEN LOADING IN BARNSTABLE, MA (CAPE COD)

Laura Erban

USEPA

Acknowledgments

Disclaimer: The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency. Any mention of trade names, products, or services does not imply an endorsement by the U.S. Government or the U.S. Environmental Protection Agency. The EPA does not endorse any commercial products, services, or enterprises.

Nutrients and co-pollutants in onsite wastewater can overload water resources

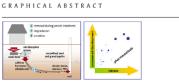
The New Hork Times

A Toxic Stew on Cape Cod: Human Waste and Warming Water

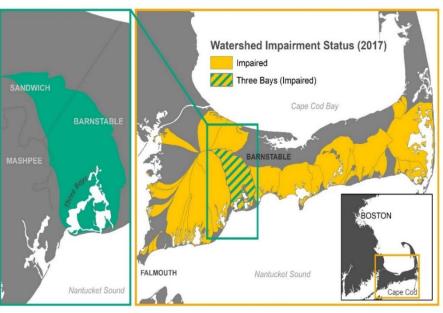
Climate change is contributing to electric-green algae blooms. Massachusetts wants a cleanup of the antiquated septic systems feeding the mess, but it could cost billions.

presence

Contents lists available at ScienceDirect


Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv

Pharmaceuticals, perfluorosurfactants, and other organic wastewater compounds in public drinking water wells in a shallow sand and gravel aquifer


Laurel A. Schaider^{*}, Ruthann A. Rudel, Janet M. Ackerman, Sarah C. Dunagan, Julia Green Brody Silent Spring Institute, 29 Crafts Street, Newton, MA 02458, USA

· Nitrate, boron, and extent of unsewered development correlate with OWC

More than 30 Cape Cod watersheds have Total Maximum Daily Loads (TMDLs) for nitrogen. Source: Twichell et al., 2019. EPA/600/R-19/107

USGS

Cape Cod communities are pursuing multiple means of load reduction

- TMDLs call for >50% reduction in nitrogen (N) loading from septic systems Cape-wide.
- Sewer expansion and complementary approaches for recurring and legacy pollution.
- Clean Water Act Section 208 Plan Update Technologies Matrix identifies many interventions, including enhanced decentralized or onsite wastewater treatment.

Buzzards Bay Coalition

NYTimes

Town of Mashpee

Cape Cod Commission, 2015

Improving wastewater treatment takes time

- Innovative/Alternative (I/A) septic systems in Massachusetts have historically sought to meet a performance goal of 19 mg/L total nitrogen (TN) in effluent.
- New regulations (2023) set a more stringent goal for best available nitrogen reducing technologies of 10 mg/L TN
- 50 installations and 3 years of monitoring are required for general use approval.
- Few high-performing, or enhanced I/A (EIA) options are available to users.

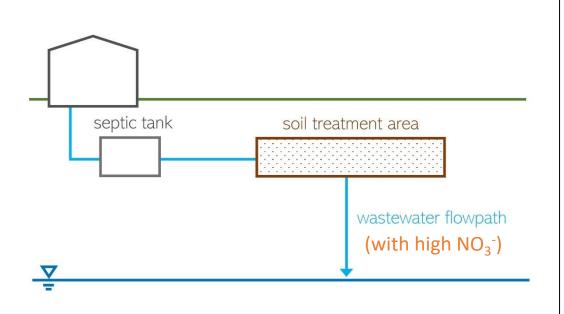
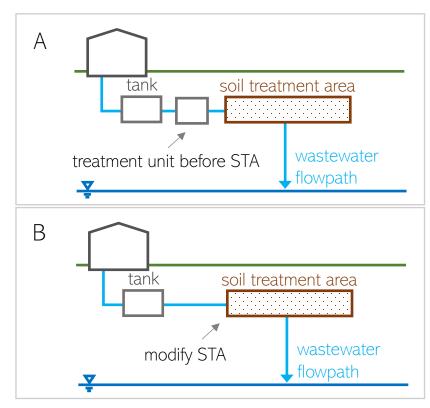

Sampling by MASSTC

photo: L. Erban

Enhancing onsite wastewater treatment

conventional septic system

* Note that the diagram is simplified and not to scale!


alternatives

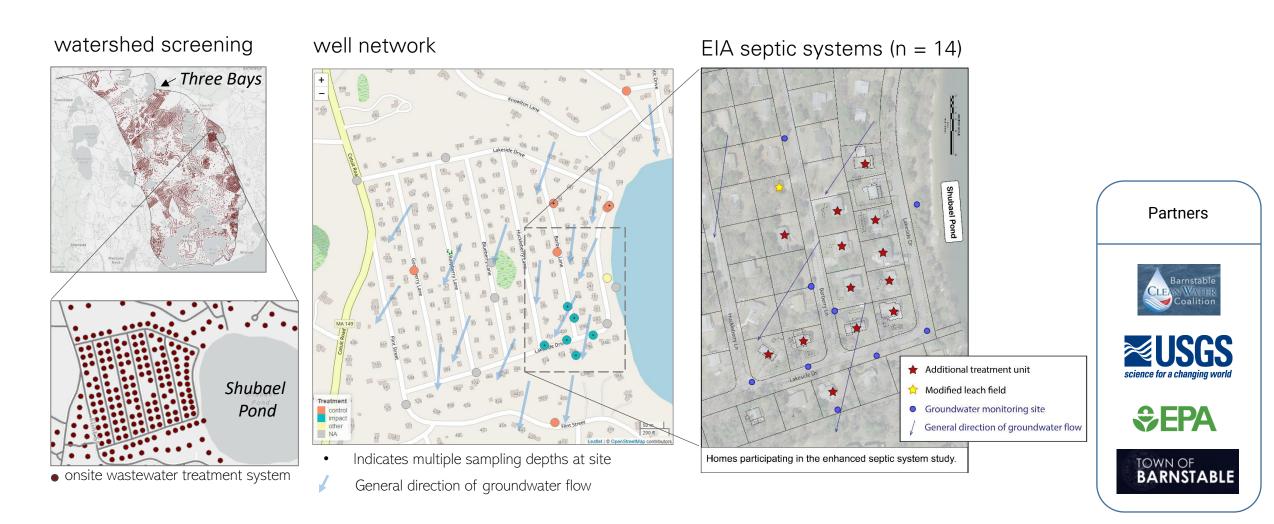
- separate waste streams (urine diversion, composting toilets, tight tanks)
- add treatment stage(s) for mixed effluent

Enhancing onsite wastewater treatment of nitrogen (N)

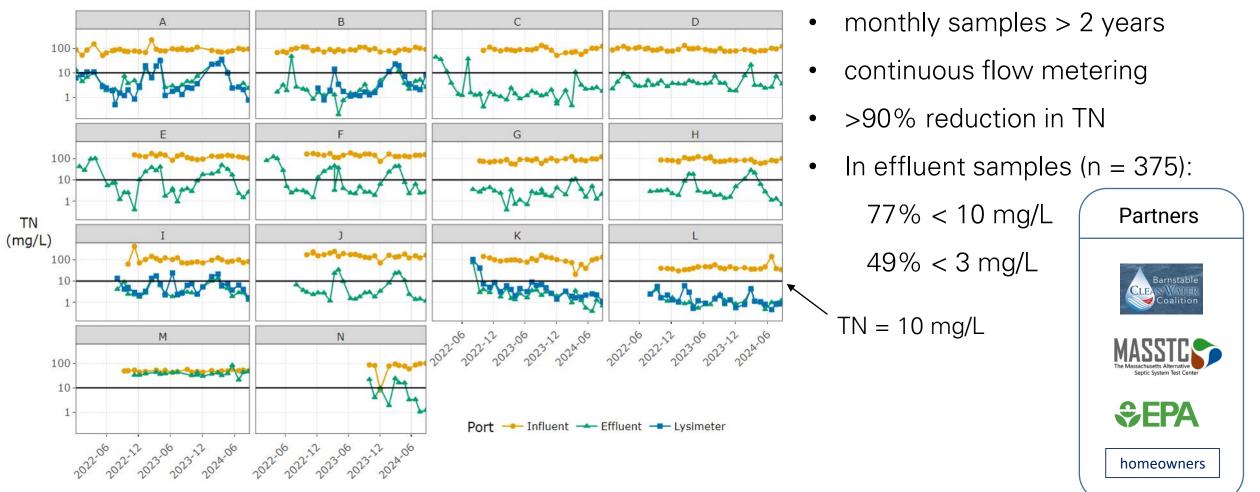
alternative septic systems

* Note that the diagram is simplified and not to scale!

- Designs with a lignocellulosic <u>carbon source</u> can provide a high degree of N removal.
- Two designs (proprietary and non-proprietary) use woodchips in this demonstration effort.

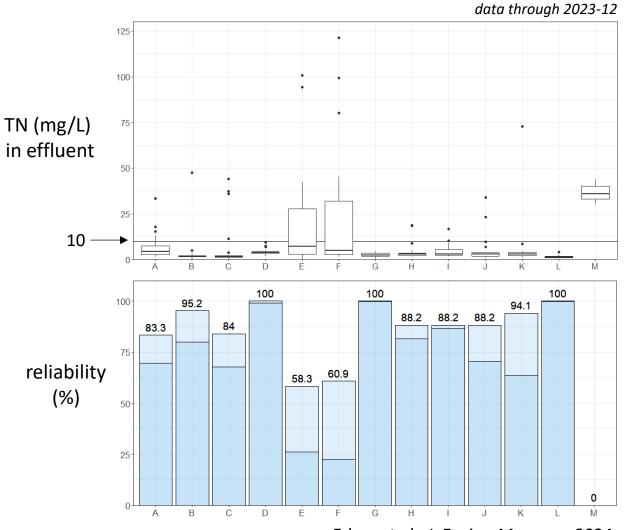

NiTROE[®] treatment unit by KleanTu LLC

modified STA by MASSTC



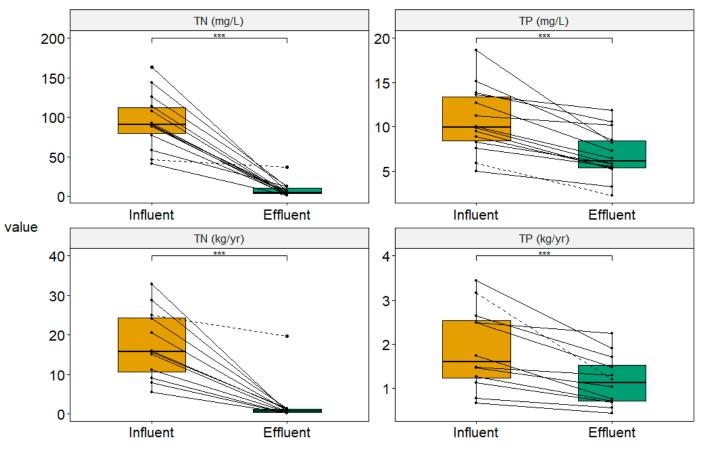
Demonstration setup

Performance monitoring: N concentrations over time



Preliminary Information-Subject to Revision. Not for citation.

Reliability of individual systems


- Varies by household, technology, system adjustments.
- High performance requires good design, use, and maintenance.
- Monitoring and maintenance costs scale with number of systems.
- How might we implement cluster systems and/or responsible management entities (RME)?

Erban et al., J. Enviro. Manage., 2024

Nutrient (N & P) reductions and mass loads

- Load estimates are based on mean daily flow and mean monthly concentration for systems with flow meters and a least one calendar year of data.
- Boxes depict spread in estimates among systems.
- Estimates are sensitive to aggregation method.

Erban et al., J. Enviro. Manage., 2024

EIA septic system performance: beyond nutrients

Ecological Engineering 161 (2021) 106157

Contents lists available at ScienceDirect

Ecological Engineering

journal homepage: www.elsevier.com/locate/ecoleng

Removing 80%–90% of nitrogen and organic contaminants with three distinct passive, lignocellulose-based on-site septic systems receiving municipal and residential wastewater

Christopher J. Gobler ^{a,b,*}, Stuart Waugh ^a, Caitlin Asato ^a, Patricia M. Clyde ^{a,b}, Samantha C. Nyer ^{a,b}, Molly Graffam ^{a,b}, Bruce Brownawell ^b, Arjun K. Venkatesan ^{a,c}, Jennifer A. Goleski ^b, Roy E. Price ^{a,b}, Xinwei Mao ^{a,c}, Frank M. Russo ^{a,c}, George Heufelder ^d, Harold W. Walker ^{a,1}

^b School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA

- ^c Department of Civil and Environmental Engineering, Stony Brook University, Stony Brook, NY 11794, USA
- ^d Massachusetts Alternative Septic System Test Center (MASSTC), Barnstable County Department of Health and Environment, Barnstable, MA 02630, USA

frontiers Frontiers in Marine Science

түре Original Research РИВЦЯНЕД 23 May 2023 DOI 10.3389/fmars.2023.1069599

Check for updates

OPEN ACCESS

EDITED BY Wei-Bo Chen, National Science and Technology Center for Disaster Reduction(NCDR), Taiwan

REVIEWED BY Lisa Krimsky, University of Florida, United States Ming Ye, Florida State University, United States

*CORRESPONDENCE Alexie N. Rudman Malexie.rudman@capecod.gov

RECEIVED 14 October 2022 ACCEPTED 08 May 2023 PUBLISHED 23 May 2023

Factors in homeowners' willingness to adopt nitrogenreducing innovative/alternative septic systems

Alexie N. Rudman^{1,2*}, Kate K. Mulvaney¹, Nathaniel H. Merrill¹ and Katherine N. Canfield¹

¹Office of Research and Development, United States Environmental Protection Agency, Narragansett, RI, United States, ²Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, United States

Journal of Environmental Management 370 (2024) 122737

Contents lists available at ScienceDirect

Journal of Environmental Management

journal homepage: www.elsevier.com/locate/jenvman

Research article

Reducing wastewater nitrogen loading by >90% with carbon-amended septic systems: A field demonstration in Barnstable (Cape Cod), Massachusetts

Laura E. Erban^{a,*}, Sara K. Wigginton^b, Brian Baumgaertel^b, Bryan Horsley^b, Timothy D. McCobb^c, Zenas Crocker^d, Scott Horsley^e, Timothy R. Gleason^a

* U.S. Environmental Protection Agency, Office of Research and Development, Narragansett, RI, USA

- ^b Massachusetts Alternative Septic System Test Center, Sandwich, MA, USA
- ^c U.S. Geological Survey, New England Water Science Center, Northborough, MA, USA ^d Barnstable Clean Water Coalition, Osterville, MA, USA
- * Horsley Consulting, Cotuit, MA, USA

Professional Conversion of Con

^a New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY 11794, USA

EIA septic systems in context

- One of many solutions
- Total mass of pollutants
- Values and perceptions of people
- Limitations and co-benefits

legacy

Wetland restoration site. Photo: K. Canfield

		Site Scale	Neighborhood	Watershed	Cape-Wide
		Standard Title 5 System	Cluster Treatment System: Single or Two-stage	Conventional Treatment	Fertilizer Management 🛛 💠
	E	I/A Title 5 Systems	Satellite Treatment	Advanced Treatment	Compact and Open Space Development
N.	tiol	Enhanced I/A Systems Nutrient Reducing Development 💠			
	Reduction	Toilets: Composting, Incinerating, Packaging, Urine Diverting	Transfer of Devel	opment Rights 🛛 💸	
	_		Constructed	Stormwater: 🔅 Best Management Practices (BMPs)	
	ior				
	liat	Permeable Reactive Barriers (PRB)			
	hed	Phytoremediation			
	Remediation	Stormwater: Bioretention/ Soil Media Filters	Fertigation Wells: Tu	rf, Cranberry Bogs	
	-		Stormwater:		-
/ wastewater	nollui	tion	Constructed Wetlands		
, masterrater	pond		Aquaculture/She	-	
	u		Coastal Habitat		
	atio		Inlet/Culvert Constructed Wet		
43	tor		Pond and Estua	t Dalla	
	Ses		Surface Water Reme	 Policy 	
	faller		Pond and Estua	1	

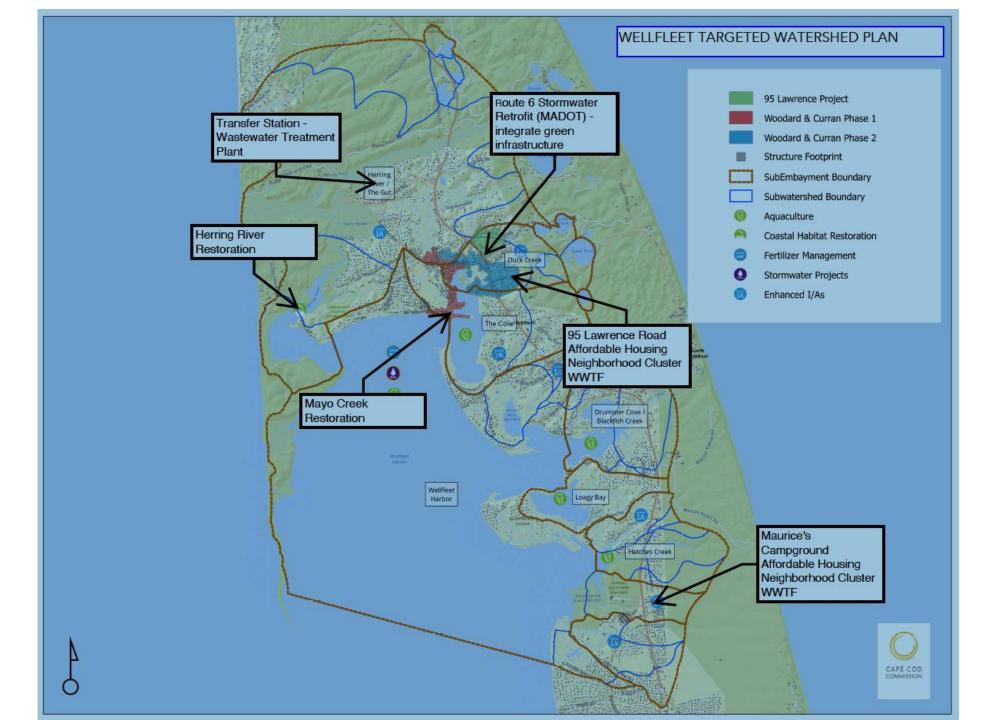
Adapted Technologies Matrix from Cape Cod Area Wide Water Quality Management ("208") Plan Update (2015)

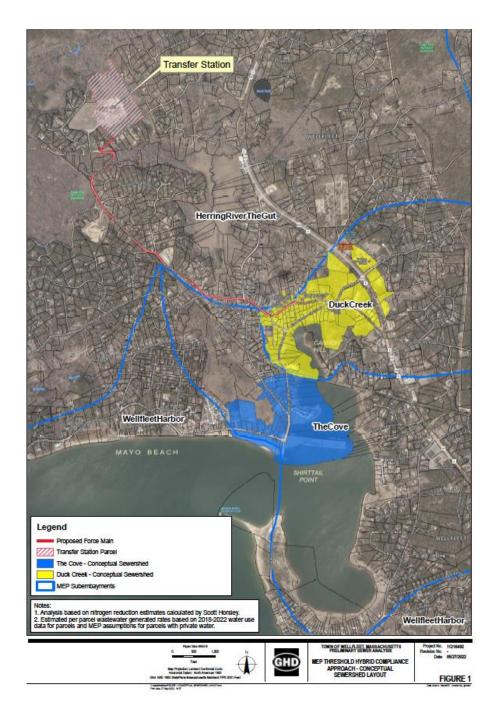
Questions?

erban.laura@epa.gov

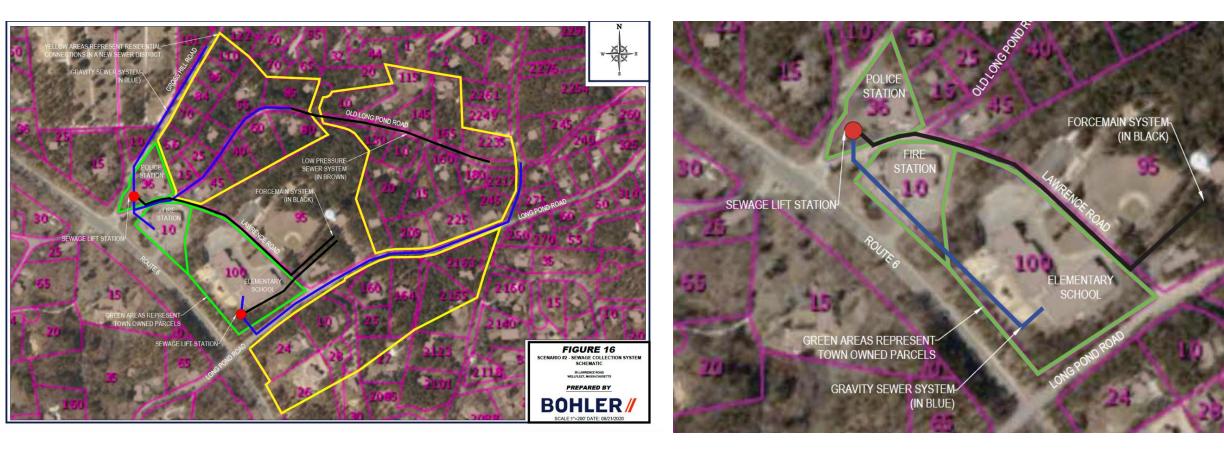
Laura Erban, PhD

Office of Research and Development Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division

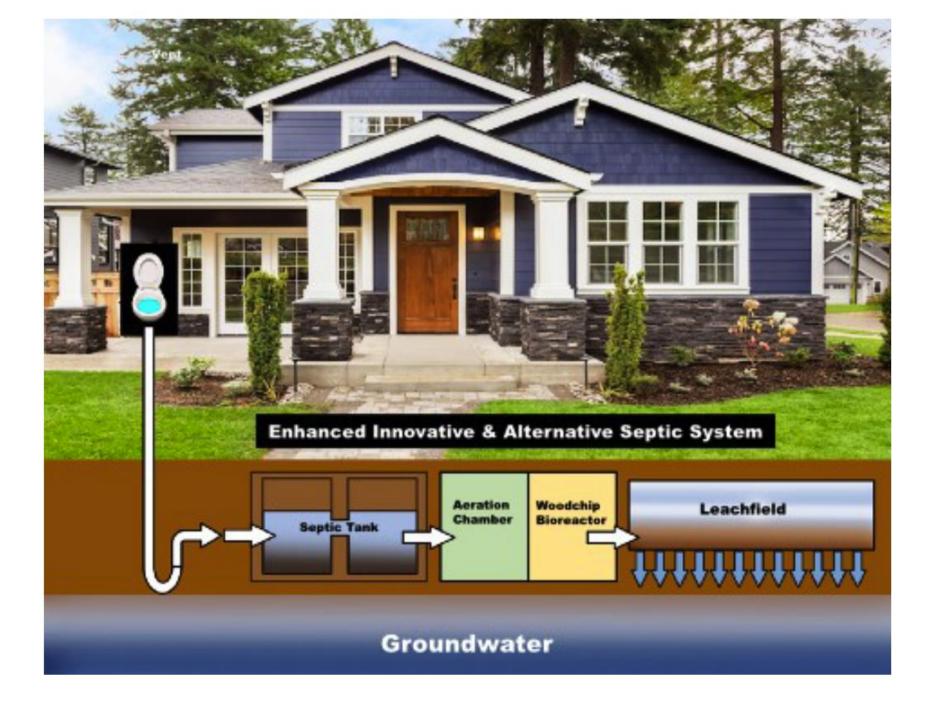

CASE STUDIES: I/As AS INFRASTRUCTURE


Scott Horsley

Water Resources Consultant



Wellfleet Targeted Watershed Management Plan (TWMP) Update Scott Horsley, Water Resources Consultant



95 Lawrence Road Affordable Housing Project

Option A – Neighborhood System

Option B – Municipal Buildings

Wellfleet Targeted Watershed Management Plan - Cost/Sensitivity Analysis

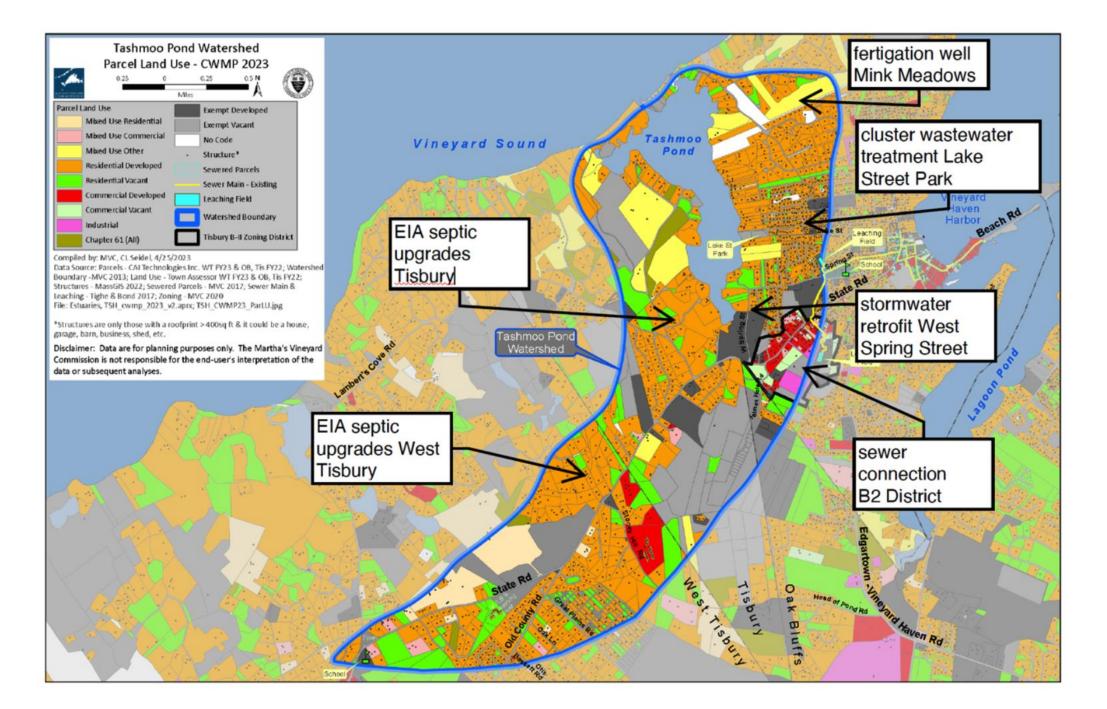
Table 8 – Comparative Costs – Wastewater Alternatives

	N load	N reduction			Cost				
	Concentration mg/liter	kg/year		ar percentage		capital		\$/kg	
Title 5 system	23.6	4.73	0. 1						
I&A @ 5 mg/liter	5	0.90	3.83	81%	\$	35,000	\$	457	
I&A @ 8 mg/liter	8	1.44	3.29	69%	\$	35,000	\$	533	
I&A @ 11 mg/liter	11	1.98	2.74	58%	\$	35,000	\$	638	
I&A @ 19 mg/liter	19	3.43	1.30	28%	\$	35,000	\$	1,344	
Town-wide WW @ 3 mg/l	3	0.54	4.19	89%	\$	76,400	\$	912	
Town-wide WW @ 5 mg/l	5	0.90	3.83	81%	\$	76,400	\$	998	
Downtown WW @ 3 mg/l	3	0.54	4.19	89%	\$	109,800	\$	1,311	
Downtown WW @ 5 mg/l	5	0.90	3.83	81%	\$	109,800	\$	1,435	
Cluster Treatment A @ 6 mg/l	6	174	511	75%	\$4	1,703,300	\$	460	
Cluster Treatment A @ 10 mg/l	10	290	395	58%	\$4	1,703,300	\$	595	
Cluster Treatment B @ 6 mg/l	6	124	365	75%	\$2	2,546,210	\$	349	
Cluster Treatment B @ 10 mg/l	10	207	282	58%	\$2	2,546,210	\$	451	

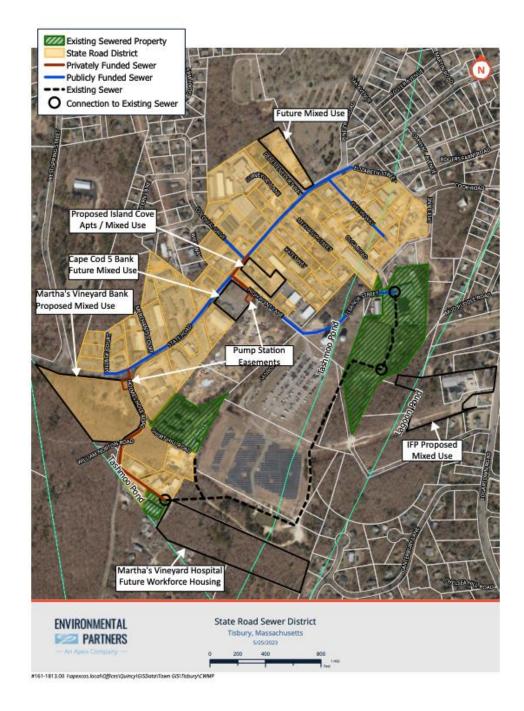
Wellfleet Targeted Watershed Plan Costs (\$ M)

Sewer Collection & Treatment

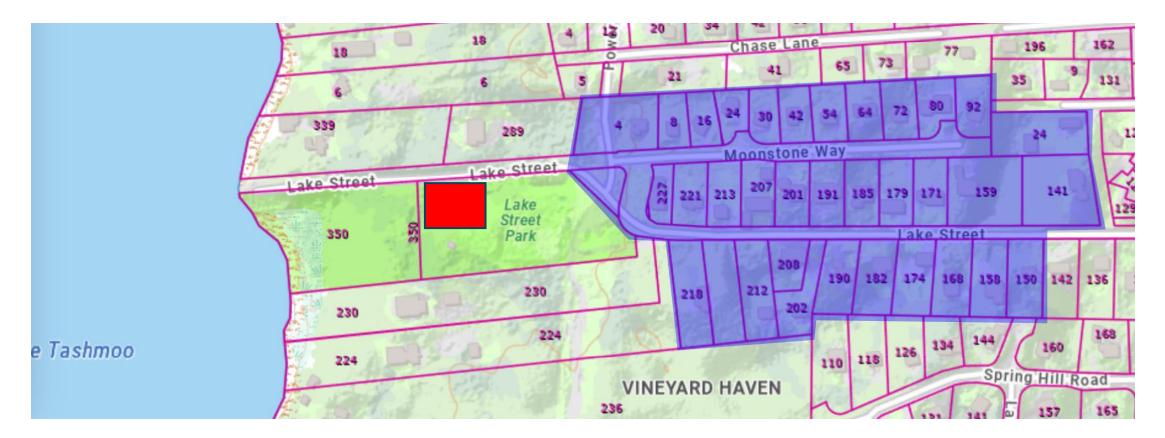
	Scenario A	Scenario B
	Hybrid	Traditional
Collection System	\$9.4	\$80.4
Wastewater Treatment	\$10.9	\$32.7
Sewer Laterals	\$3.2	\$27.5
Design	\$2.0	\$11.3
Construction Services	\$5.0	\$30.7
Total Municipal Centralized Infrastructure	\$30.5	\$182.6
Collection System	\$0.8	\$0.8
Wastewater Treatment	\$0.9	\$0.9
Leaching System	\$0.2	\$0.2
Design & Contingencies	\$0.6	\$0.6
Total 95 Lawrence Capital Costs	\$2.5	\$2.5
I&A Septics	\$63.0	\$44.9
Design	\$10.6	\$7.5
Total I&A Septics	\$73.6	\$52.4
TOTAL COSTS (millions)	\$106.6	\$237.5


95 Lawrence Road Affordable Housing WWTF

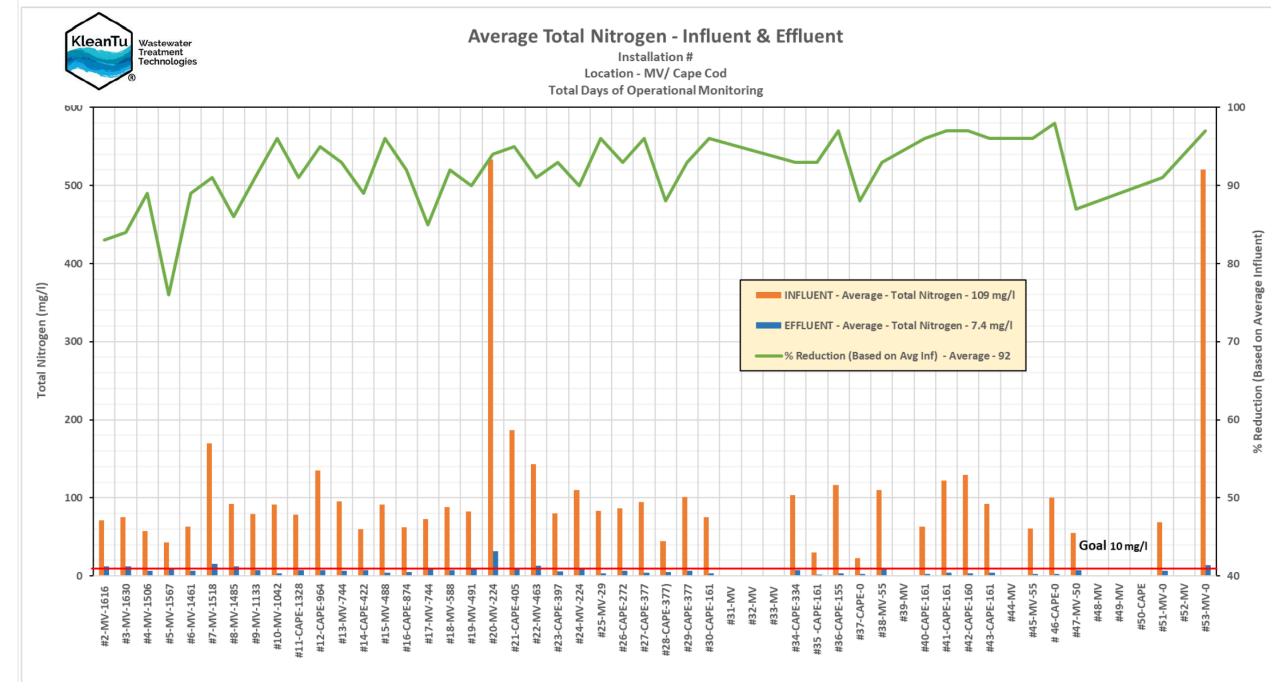
I&A Septics


Lake Tashmoo Targeted Watershed Management Plan (TWMP) Town of Tisbury

> Scott Horsley Water Resources Consultant


Nitrogen Reduction Strategy (2043)

Technology/Strategy			Calculation Summary	Reduction (kg/yr)
Sewering (B2 District)	16330	gals/day		560
Enhanced I&A Septics	838	upgrades	x 171 gals/day x (26.25 - 10.0) mg/liter	3217
Cluster Treatment	9900	gals/day	x (26.25 - 5.0) mg/liter	291
Fertilizer Management	25	percent	x 457 kg/year	114
Stormwater Retrofits	25	percent	x 715 kg/year	179
TOTAL				4361



Core Sewer Area B2 Zoning District

Cluster Wastewater Treatment System – Lake Street Park

Note: Conceptual Plan

Enhanced Innovative & Alternative (EIA) Septic Systems Actual (As-Built) Costs (including engineering design fees)

		Number	Construction	Engineering	Total Cost	Updated Cost Estimates 2023
			Cost	Design	Per System	(add \$10,000)
Retrofit of E	xisting Title 5 System					
	Buzzards Bay Coalition	4	\$24,891	\$3,000	\$27,891	
	Barnstable Clean Water Coalition	4	\$19,852	\$6,351	\$26,203	
	Average		\$22,372	\$4,676	\$27,047	\$37,047
Partial Upgra	ade (replace septic tank or leachfield)					
	Barnstable Clean Water Coalition	2	\$27,981	\$6,351	\$34,332	\$44,332
Full Upgrade	es (including both septic tank and leachfield)					
	Buzzards Bay Coalition	4	\$35,535	\$3,000	\$38,535	
	Barnstable Clean Water Coalition	2	\$32,808	\$6,351	\$39,159	
	Average		\$34,172	\$4,676	\$38,847	\$48,847
	OVERALL AVERAGE COSTS				\$33,409	\$43,409
References:	Buzzards Bay Coalition, Designing a Municipal I	Model for N	landating, Fund	ling, and Ma	naging I&A S	eptic Systems, June 2020
	Barnstable Clean Water Coalition, Schubael's Po	ond Study, 2	2022			

the resource inc.
for Community and Economic Development

FILL IN THE BLUE BOXE FILL IN THE BLUE BOXE

or Community and Economic	Development		THE IN THE DECE BOXE	THE IN THE DECE BOXE	THE IN THE DECE DOM	THE IN THE DECE BOXE	THE IN THE DECE DOX	
PROJECT ID	TRHR21-13T	CONTRACTOR:	Reis Excavating	JW Dubis	Ken Rose Septic	Northeast Construction	Sweeney Excavation Cor	
PROPERTY OWNER	Anne & Alexander Marshall	CONTACT:	justin Reis	Eugene Dubis	Kevin Rose	Robert Tulloch	Shay Perry, PM/Estimate	
STREET ADDRESS			515 tubman rd	79 Stonehil Rd	PO Box 1443	32 Sara Ann Ln	P.O. Box 2078	
TOWN, STATE, ZIP			brewster	Chatham	Wellfleet	Brewster	Sagamore Beach	
PHONE	508-349-6224	STATE:	ma	ma	ma	ma	MA	
CELL	340-690-3236	ZIP:	2631	2633	2667	2631	2562	
EMAIL	amarshall02@aol.com	PHONE:		508-945-0283	5083496804	508-989-4169	774-269-1914	
YEAR BUILT	1972	CELL:	5082404837				774-283-3701	
BID DUE DATE	11/9/2023	EMAIL:	eisexcavatingllc@gmail.co	pam@jwdubis.com	enroseseptic@comcast.n	<u>rstnec@aol.com</u>	@sweeneyexcavatingco	
TYPE OF WORK	SEPTIC INSTALL							
	I/A NitROE system	L. M.						
CONTACT:	Jean Stanley	Alle Mulin						
PHONE:	508-694-6521	Jene Bulay						
EMAIL:	jean@resource.org	C						
Bids received by Jean St	anley, Program Director before	2pm 11/09/2023						
WWU #	ESTIMATE		PRICE	PRICE	PRICE	PRICE	PRICE	
1		NitROE SYSTEM						
А	Install according to desig	'n						
В	Perform all elements included in Septic WWU		\$ 16,500.00	\$ 54,875.00		\$ 28,969.00	\$ 32,582.00	
С	Landscaping restoration		\$ 1,000.00	\$ 2,500.00		\$ 1,000.00	\$ 3,218.00	
	•		\$ 17,500.00	\$ 57,375.00	\$ 21,325.00	\$ 29,969.00	\$ 35,800.00	
2	KLE/	ANTU NItROE SYSTEM						
	System	cost provided by KleanTu	\$ 23,500.00	\$ 23,500.00	\$ 23,500.00	\$ 23,500.00	\$ 23,500.00	
	OM contract	cost provided by KleanTu	\$ 1,300.00	\$ 1,300.00	\$ 1,300.00	\$ 1,300.00	\$ 1,300.00	
			\$ 24,800.00	\$ 24,800.00	\$ 24,800.00	\$ 24,800.00	\$ 24,800.00	
			<u> </u>	<u> </u>	\$ 46,125,00	É	<u> </u>	
JOB TOTAL			\$ 42,300.00	\$ 82,175.00	\$ 46,125.00	\$ 54,769.00	\$ 60,600.0	
			2 weeks after permit	3 wks from award	after obtaining permit	-	11/15/2023	
			2 weeks after permit 5 days	3 wks from award 1 week	after obtaining permit 1 week	soon after permit 5-8 days	11/15/2023 5 days	

Tisbury Health Regulations

SECTION 5. INSTALLATION OF ENHANCED DE-NITRIFICATION TECHNOLOGY

5.2 The following situations are "triggers" for the purposes of section 5.1:

- a new wastewater treatment system is required to serve a Property (i.e., new construction);
- b) at the time of replacement, upgrade or relocation of a property's existing wastewater treatment system;
- additional development on the **Property** or a change in use or in intensity of use (or potential use) which would increase wastewater Nitrogen discharge beyond the Board of Health approved system capacity irrespective of whether the existing wastewater treatment system has excess sanitation capacity¹;
- d) at the time that a **Property** is transferred to another owner.

QUESTIONS?

BREAK

ADVANCED SEPTIC SYSTEM UPDATES – PART 2

Dr. Alissa Cox University of Rhode Island

Bruce Walton NEWEA I/A Task Force

WELCOME BACK!

Dr. Laura Erban US EPA ORD

Scott Horsley Water Resources Consultant

David Iorio Izzo MASSTC

SESSION GOALS

- Describe current knowledge of advanced wastewater treatment technologies
 - Share findings from ongoing research on enhanced innovative/alternative septic systems
- Share lessons learned: holistic wastewater management at the community scale
 - o Case studies
 - Managing decentralized infrastructure
 - o Financial implications

Q&A opportunities after each section + at end of session

MANAGING I/As: THE SEPTIC UTILITY PROGRAM

David Iorio Izzo & Brian Baumgaertel

Massachusetts Alternative Septic System Technologies Center Barnstable County Department of Health

MASSTC

WHAT IS A RME?

- A Responsible Management Entity (RME) functions much like a sewer utility, but with a focused mission on managing residential Innovative/Alternative (I/A) septic systems. Its role is crucial in ensuring these systems operate efficiently, safeguarding both public health and the environment.
- In Barnstable County, our RME is the Septic Utility Program (SUP)

WHAT CAN A RME PROVIDE?

- Permitting & Installation:
 - ensure systems meet regulatory & environmental standards
- Operation & Monitoring:
 - Continuous oversight to guarantee systems function at their best
- Long Term Care:
 - providing maintenance & support to extend the system's

WHAT CAN THE SUP DO FOR A TOWN?

• Cost Distribution and Regulatory Compliance:

- Coordinate & manage multiple I/A system installations through a competitive bidding process.
- Instead of individual homeowners navigating the procurement process alone, the SUP can pool resources and solicit bids for multiple installations simultaneously.
- This approach not only drives down costs through economies of scale but also ensures consistent quality & adherence to regulatory standards.

• Operation and Management (O/M) of Systems:

- Offers comprehensive solutions for the ongoing O/M of I/A systems.
- By bidding for an operator to oversee a series of systems, we streamline administrative tasks for homeowners & operators while ensuring consistent maintenance standards.
- Under this model, the SUP assumes responsibility for contracting with operators, simplifying payment processes, & providing homeowners with a single point of contact for their system needs.

• Unbiased Third-Party Oversight:

- Can serve as an impartial third party, conducting sampling and inspections to verify system performance and regulatory compliance.
- This unbiased oversight helps instill confidence in residents & regulatory agencies alike, fostering transparency & accountability throughout the process.

QUESTIONS?

FINANCIAL IMPACT MODELING: EIA ON CAPE COD

Bruce Walton

Chair of the NEWEA I/A Task Force

CONTEXT

- o Drivers
 - Location Value
 - Time Value
 - Performance
 - o Cost
- We Support the Cape Cod Commission Hybrid
 Approach Sewers <u>AND</u>, not Or, EIAs, etc.
- Directional Model Generally Right vs Precisely
 Wrong

APPROACH - TOTAL SYSTEM COST

The Nature Conservancy (TNC) estimates
 about 129,000 Title 5 homes on the Cape.
 Need to upgrade about half.

- o Town of Barnstable CWMP (2020)
 - Sewer 12,000 homes to satisfy Clean Water Act, yielding 55% homes sewered
 - 30 years in three 10-year phases (roughly 40%, 40%, 20% N removed/phase)

APPROACH - TOTAL SYSTEM COST (CONT.)

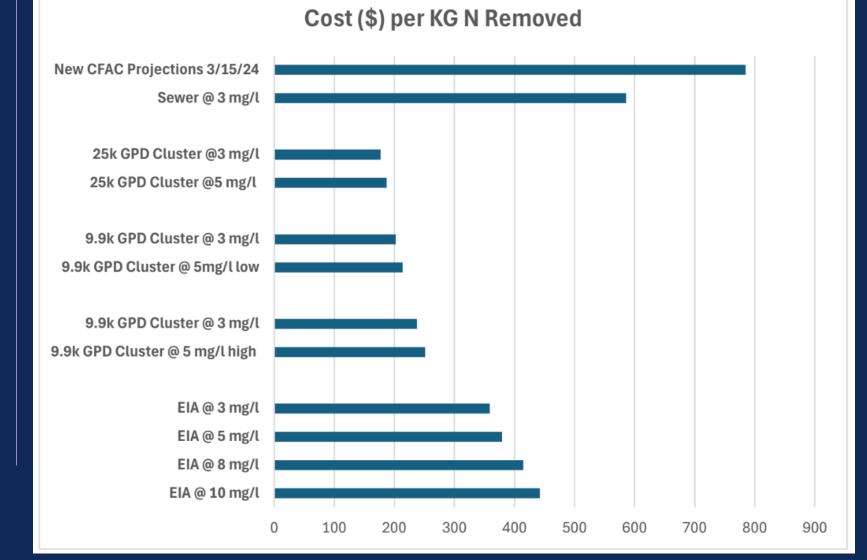
Let's look at using EIA for half of those homes

- Calculate Total KG N Removed/year by
 Sewering 6000 Homes
- o Match Number of EIAs Needed to Remove
 - Same N as Sewering
 - Depending on Assumptions, need 6343-7400 EIAs (6-23% more)
- o Calculate Cost Impact

TOTAL COST CALCULATIONS

Sewer Capital Cost

- Collection System –
 Sewer Line
- Connection Home to Sewer
- o Treatment Planto Soft Costs


EIA Capital Costs @ 60% Retrofit

o Design & Permitting
o Equipment
o Installation
o RME

TOTAL COST CALCULATIONS

- Sewer Operations & Maintenance (O&M)
 - Direct and Indirect Costs from FY 2024 Operating Budget
 - Allocation based on Percentage of Flow from Current Homes
- EIA Operations, Maintenance & Monitoring (OM&M)
 - Weighted Average over 20 Years including Provisional and General Permit Periods
 - Operations, Remote Monitoring, Sampling, RME, Replacement Costs
- Both were \$1100-\$1200/home/year. Consider this a wash.

EIAS, CLUSTERS & SEWERS - PER HOME COST PER KG REMOVED - PRELIMINARY

* % reduction relative to conventional Title 5 system

PERFORMANCE - INFLUENT AND EFFLUENT

o <u>Influent</u> from the Home

- At 30-35% reduction from Title 5 systems, <u>assume</u> 40 mg/l.
- 65-95+ mg/l observed at Shubael Pond. Impact? Needs study.

• MADEP Effluent (mg/l) Standards

- Title 5 26.25 The comparison point.
- o I∕A (General Permit, now) 19
- EIA (Provisional Permit & Target) 10
 - New Regulations System must achieve permit level 90% of time.
- BANRT Currently @ <5 median performance, <10 mean.
 - o Best Available Nitrogen Reducing Technology

MODELING VARIABLES – 2-4 BEDROOMS (2023)

- o EIA Capital Cost <u>\$50k/home</u>
- Sewering Capital Cost <u>\$100k/home</u>
- \circ O&M vs OM&M <u>A wash</u>
- o EIA Performance <u>10 or 5 mg/l</u> Effluent N
 - Reduction from 40 to 10 or 5 \in 30 or 35 mg/l.
- Sewering Performance <u>3 mg/l</u> Effluent N
 Reduction from 40 to 3 = <u>37 mg/l</u>.
- o Influent N − <u>40</u> (MADEP standard) <u>or 65 mg/l</u>

Anecdotal Range \$35k-\$60k+ Anecdotal Range \$80k -\$120k Anecdotal Range \$1,200-\$1,500/yr.

FINDINGS @ 50% EIAs

- <u>Case (Influent N and Effluent N)</u>
- <u>MADEP</u> (40 and 10 or 5 mg/l)
- Observed (65 and 10 or 5 mg/l)

EIA Savings

\$230m - \$283m

\$262m - \$290m

- <u>Cost of Waiting to Phase 3 (20% vs 50% EIA)</u>
 - MADEP Case
 - Observed Case

\$104m – \$127m \$118m - \$131m

<u>OPPORTUNITIES/VISION</u>

Use All Tools in the Toolbox. Portfolio
 Thinking. Adaptive Management
 Mentality.

Save Town Money. Get/trade N credits.
Subsidize (Homeowner) To Equalize (and still save town \$).

SUBSIDIZE TO EQUALIZE

- "Who pays for what" is a political discussion.
- Barnstable essentially caps new sewer homeowner cost at about \$20,000.
- Sewer @ \$100k/home = \$80,000 subsidy
- If the town supports EIAs to the same homeowner cost
 - EIA @ \$50k/home = \$30,000 subsidy
- Town could save \$50k/home and eliminate a political problem.

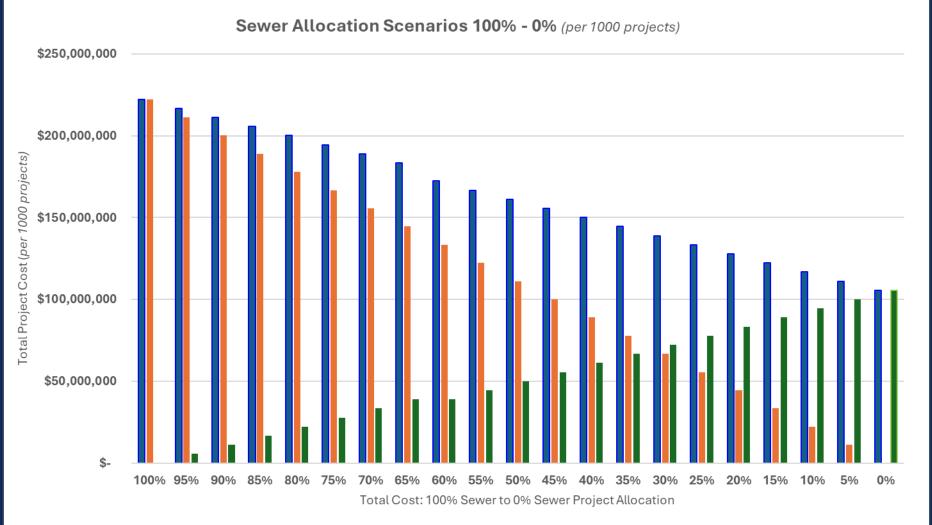
TAKE AWAYS AND RECOMMENDATIONS

• Numbers are Big

Don't Wait – Prepare, Learn, Adapt

• Incorporate Trigger Ordinances

THE NATURE CONSERVANCY


 Has been building a Financial Modeling Tool for strategic decision makers to evaluate Sewer and EIA Septic projects

o Purpose:

- o Assess Total Costs
- o Explore Total Funding Needs
- Evaluation of Economic Impacts

SEWER:SEPTIC RATIO IMPLICATIONS

- This visual represents a "project mix" of Sewer:Septic (per 1,000 projects. There are up to 128,855 Cape-wide)
- Highest Project Costs are Associated with 100% Sewer Projects
- Lowest Project Costs are Associated with 100% EIA Septic Projects
- IF Cost is a Driving Factor -- Towns Should Assess What Project Mix is best fit

TISBURY TRIGGER ORDINANCE UPDATED 9/26/23

ElAs are required when (emphasis mine):

 a) a new wastewater treatment system is required to serve a Property (i.e., <u>new construction</u>);

b) at the time of <u>replacement, upgrade or relocation</u> of a property's existing wastewater treatment system;

c) additional development on the Property or a change in use or in intensity of use (or potential use) which would increase wastewater Nitrogen discharge beyond the Board of Health approved system capacity irrespective of whether the existing wastewater treatment system has sanitation capacity;

d) at the time that a Property is **transferred to another owner**

QUESTIONS?

CLOSING THOUGHTS

EIAS = CRITICAL

- We need diversified wastewater treatment options
 - o More tools in toolbox
- Managing decentralized infrastructure proactively is critical to long-term viability
- o Current funding mechanisms need work

THE ELEPHANT IN THE ROOM

OUR COASTAL COMMUNITIES ARE BEARING THE BRUNT OF CLIMATE CHANGE

WE ARE NOT (YET) PLANNING FOR CHANGES IN SEA LEVEL, PRECIPITATION PATTERNS, OR GROUNDWATER TABLES WHEN DESIGNING AND INSTALLING ADVANCED SYSTEMS

Photo: M. Dowling

LET'S MAKE SURE OUR COMMUNITIES ARE PLANNING <u>HOLISTICALLY</u>

From watershed-wide management of wastewater, financing infrastructure that protects water quality, system design and installation, responsible use / operation to system maintenance and monitoring

NEED TRAINING ON ONSITE WASTEWATER TOPICS?

University of Rhode Island

 New England Onsite Wastewater Training Program

> Field, Classroom and Online Training options year-round

TCHs for...

- Registered Environmental Health Specialist / Registered Sanitarian (REHS/RS)
- MA Title V Soil Evaluators (SE) and System Inspectors (SI)

New England Onsite Wastewater Training Program

Since 1993, the New England Onsite Wastewater Training Program (NEOWTP) has provided classroom and field training for a variety of wastewater professionals throughout New England and Long Island, New York. Each year we train approximately 500 people, providing the latest information about design, installation, inspection and maintenance of conventional and advanced onsite technologies.

Classroom and Field

Are you interested in classroom and

field training opportunities with the

Training

NEOW/TP3

Professional Registries

Would you like to complete training to join the NEOWTP Inspector Registry or I&A Service Provider Registry?

BSF TRAINING REQUIREMENTS

Installing & Designing BSFs

Do you want to install and/or design

Bottomless Sand Filters in RI and MA?

INFORMATION AND REGISTRIES

QUESTIONS?

Bruce Walton bwalton@battaliawinston.com

Alissa Cox alibba@uri.edu

Laura Erban erban.laura@epa.gov

Brian Baumgaertel bbaumgaertel@capecod.gov

NEWEA Onsite Wastewater Task Force Self-Education Website www.newea.org/ <u>resources/</u> innovation/resources

Scott Horsley scotthorsley208@gmail.com

David Iorio Izzo david.iorioizzo@capecod.gov