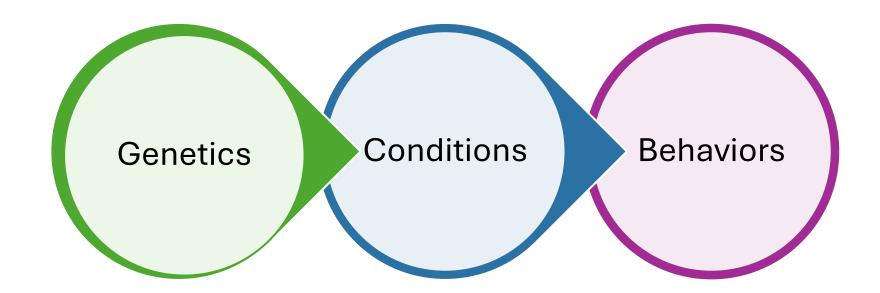
C-K-M Health: Patient Risk Assessment & Health Equity

Maria C. (Pruchnicki) Coyle, PharmD, FCCP, BCPS, BCACP, CLS Associate Professor - Clinical The Ohio State University

Disclosure Statement

 Maria Coyle has no relevant financial relationship(s) with ineligible companies to disclose.

 None of the planners for this activity have relevant financial relationships with ineligible companies to disclose.


Learning Objectives

At the completion of this activity, the participant will be able to:

- 1. Define cardiovascular-kidney-metabolic (CKM) syndrome according to the 2023 American Heart Association (AHA) Scientific Statement, including key goals for the novel framework.
- 2.Summarize recent and developing updates for risk estimation equations commonly used in clinical practice, particularly sex-specific, race-free equations for estimating kidney function and the PREVENTTM equations for total cardiovascular disease (CVD) risk.
- 3. Describe nontraditional factors that may enhance predictive usefulness of CVD risk assessment tools in the future.
- 4. Demonstrate how the CKM model could include social determinants of health to improve health equity and benefit minority populations.
- 5. Discuss clinical implementation, risk communication, and education strategies that will facilitate future adoption of the CKM prevention model in various practice settings.

CVD in the United States

- Leading cause of death (since 1920)¹
 - Men, women, and people of most racial and ethnic groups

CVD Burden – Projections

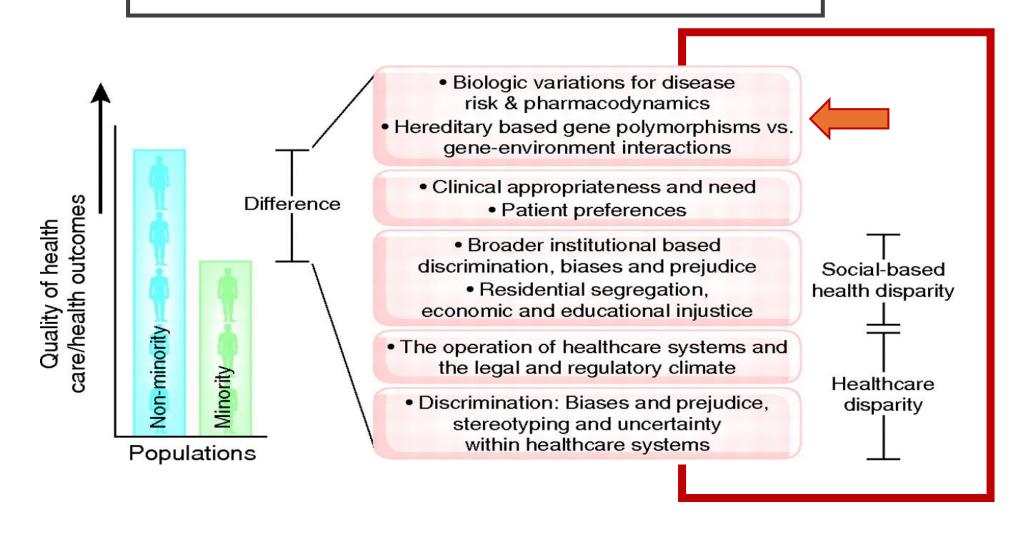
Prevalence of CVD [in millions of patients (%)]						
	2015	2035				
All with CVD	102.7 (41.5%)	131.2 (45%)				
High blood pressure	96.1	123.2				
Coronary heart disease	16.8	24.0				
Stroke	7.5	11.2				
Congestive heart failure	5.8	8.8				
Atrial fibrillation	5.2	7.2				
Total Costs*	More than \$550 <u>billion</u>	Estimated \$1.1 <u>trillion</u>				

^{*}Includes medical costs (up ~135%) and indirect costs/lost productivity (up ~ 55%)

CVD Mortality and Health Disparity

- Ganatra et al (2022)
- Age-adjusted mortality rate (AAMR) = 386.01 (95% CI: 385.73, 386.29)
 - AAMR reflective of incidence, treatments, and cardiometabolic outcomes
 - Varied by social vulnerability
 - Social Vulnerability Index (SVI) dataset of CDC: Agency for Toxic
 Substances and Disease Registry)

Health Disparities in CVD

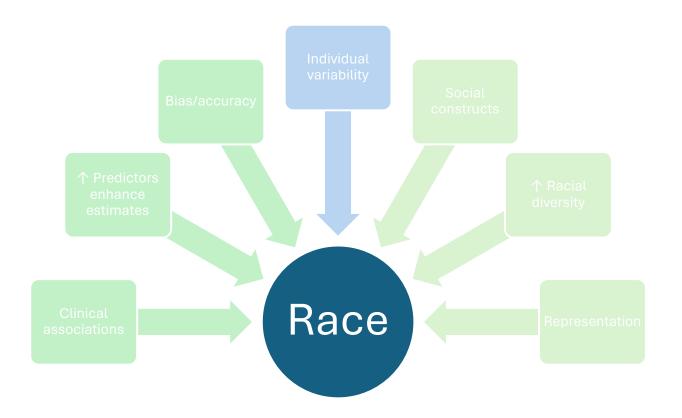

Ganatra et al (2022)

Social Vulnerability Index (SVI)					
Themes	Individual Factors				
Socioeconomic status	Below poverty level, unemployed, income level, no high school diploma				
Household composition and disability	Age \geq 65 years, age \leq 17 years, individuals > 5 years with disability, single-parent households				
Minority status and language	Minority, individual speaks English "less than well"				
Housing type and transportation	Multi-unit structure, mobile home, crowding, group quarters, no vehicle				
Scores sorted by percentile ranks: 0.00-1.00, with higher values equating to greater vulnerability • Rank of 0.00-0.25 is most favorable; rank of 0.75-1.00 is least favorable					

Age-Adjusted CVD Mortality

- Overall, CVD mortality was highest in adults > 45 years, men, Black individuals, and in rural counties
- CVD mortality was lowest in the 1st quartile, highest in the 4th quartile by Social Vulnerability Index (SVI)
 - 98.88 excess deaths per 100,000 person years
 - [344.25 (95% CI: 343.63-344.86) vs. 443.13 (95% CI: 442.49-443.77)
- Social vulnerability impact greatest in adults <45 years of age, men,
 Asian/ Pacific Islanders, American Indian or Alaska natives, Hispanics,
 and in rural counties

Differences & Disparities (Kidney Disease)


Promoting Health Equity

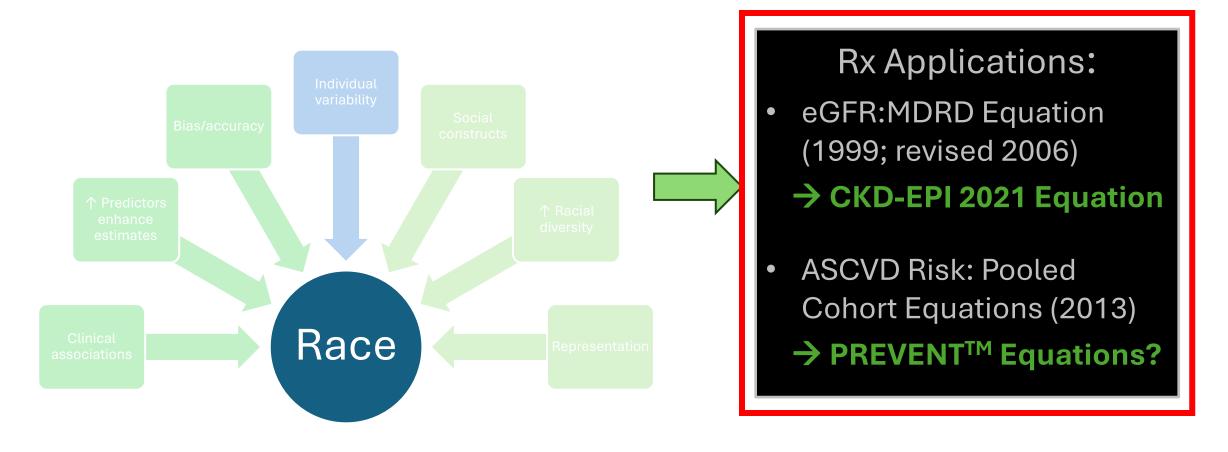
"It is much more important to know what sort of a patient has a disease, than what sort of disease a patient has."

William Osler (1849-1919)

Spotlight on Race

Considerations/Criticisms

Background (Sep 2020)


- National call to re-evaluate use of race in clinical algorithms
 - Letter of US Senators Warren, Wyden, Booker & Lee to AHQR
- Coincided with introduction of bill Anti-Racism in Public Health Act (Senator Warren, D-Mass)

P Beliefs can influence clinical care

Spotlight on Race

Considerations/Criticisms

Removing Race from eGFR

Estimating GFR - Impact

mGFR*	eGFR w/ CKD-EPI 2021	eGFR w/ MDRD	Potential Impact?
80	71	82	Eligible as kidney donor?
63	55	62	Dx for CKD Lower dose of carboplatin/cisplatin Lower dose methotrexate or ganciclovir
40	38	43	*Currently*
35	28	33	Exclusion from clinical trials Contraindication for metformin Lower dose for SGLT2 inhibitor
23	18	21	Eligible for kidney transplant

^{*}mGFR=measured GFR; all GFRs expressed as mL/min/1.73m2

Estimating GFR: Impact

Reduced Eligibility for:

Examples

Living kidney donors

Ant-cancer therapies

Medications with renal dosing component

Expanded Eligibility for:

Examples

Referral to a nephrologist

Kidney transplant waitlist

Coverage for kidney disease education

"The kidney medical community will need to monitor the impact of the non-race-based eGFR to ensure continued patient safety and health equity."

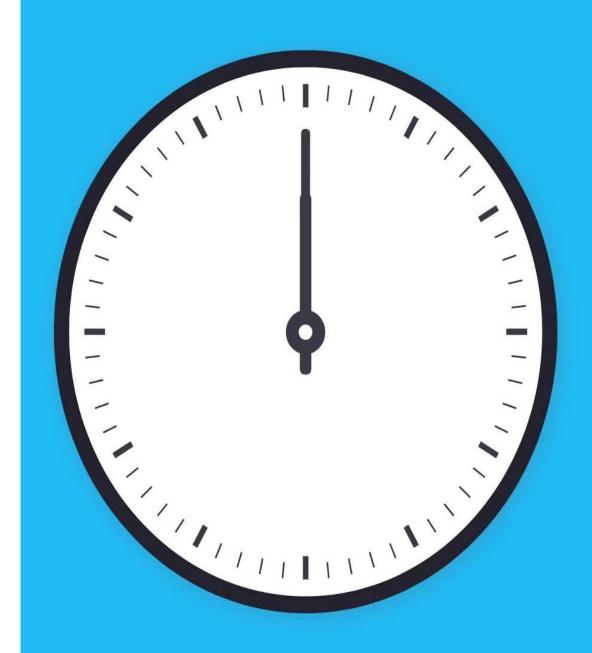
Ng J. American Society of Nephrology Kidney News 2022;14(1):22

Removing race from ASCVD Risk Models

"Sentinel" Risk Factors*

Unhealthful nutritionPhysical inactivityDyslipidemiaHyperglycemiaHigh blood pressureObesity (ABCD)Smoking (thrombosis)Kidney dysfunction

^{*}Other relevant but non-modifiable risk factors include: older age, race/ethnicity, sex differences, genetics ABCD = Adiposity-based chronic disease


2013 Risk Assessment Guideline

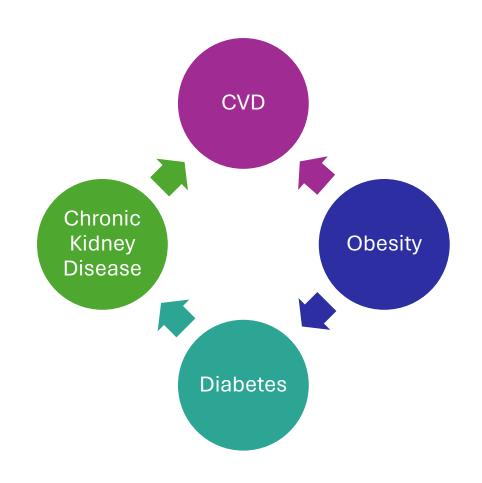
ACC/AHE Pooled Cohort Equations (PCE)

- Derived from #5 community-based cohorts, ages 40-79y
 - 11,240 White females and 9098 White males
 - 2641 Black females and 1647 Black males
- Changed from Framingham approach (pre-2013)
 - 1. Outcomes of interest = ASCVD events (beyond CHD; also stroke, PAD)
 - 2. Inclusion of Black adults in sample \rightarrow race variable in PCE
 - 3. Inclusion of diabetes as risk factor (previously "risk equivalent" only)
- PCE approach endorsed in updated guidelines for hypertension (2017), cholesterol (2018), primary prevention CVD (2019), & ADA (2024)

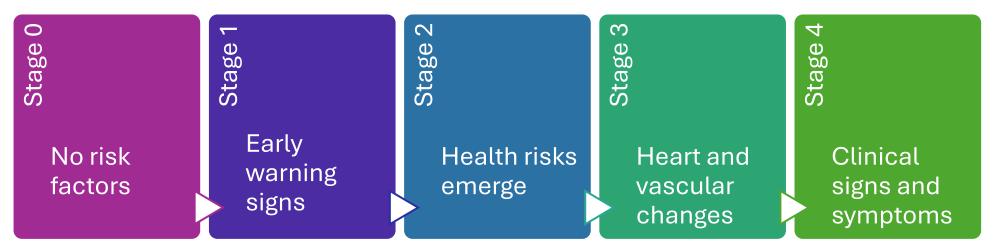
Time for Change?

- Availability of EMR datasets
- Greater ability to consider risk factors as continuous data
- Importance of health behaviors
 - "Life course" perspective of disease
 - Cardiorespiratory fitness
- Statins/other preventive Rx effects
- Increased awareness of novel risk markers and metabolic/kidney diseases
- Opportunity to broaden CVD outcomes
 - Address health disparities (race as variable)
 - Inclusion of CVD subtypes (eg. heart failure)

CV-Kidney-Metabolic Model (NEW!)

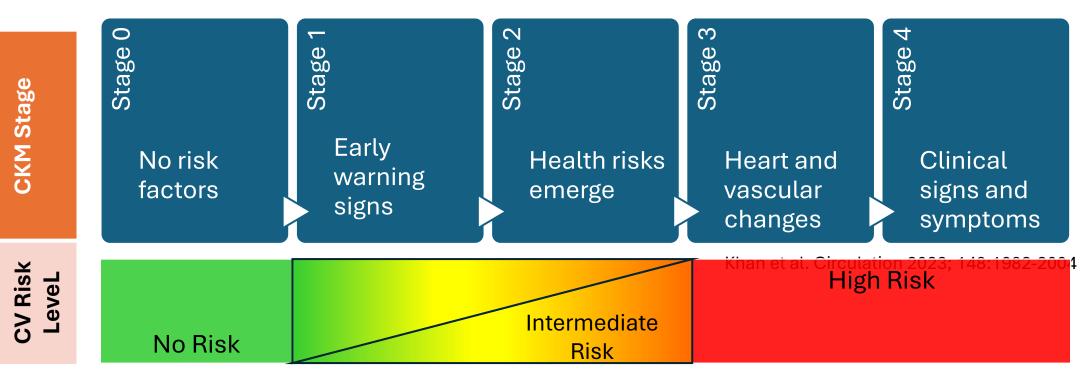

Definition

 CKM Syndrome: where a person has overlapping health problems of heart disease, kidney disease, and metabolic disease(s): obesity and/or diabetes

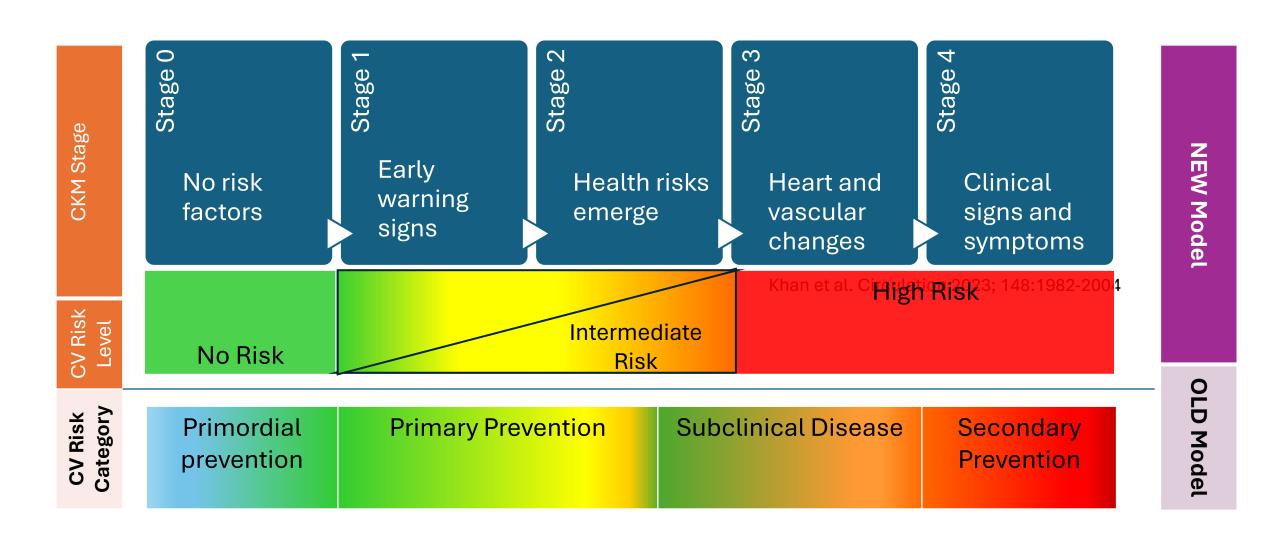

- American Heart Association

Purpose

 Moving beyond individual risk factors approach
 — more comprehensive framework



CKM Conceptual Framework (2023)


Khan et al. Circulation 2023; 148:1982-2004

CKM Conceptual Framework (2023)

Khan et al. Circulation 2023; 148:1982-2004

Compare and Contrast

CKM Risk Assessment Process

Screen - CKM Risk

- Life's Essential 8
- Consider A1c, UACR, etc

Assess - CVD Risk

- 10y/30y AR for CVD, ASCVD, HF
 → PREVENT
- Personalize and reclassify (as/if needed)

Stage CKM

- Stage 0 → Stage
 4
- See previous slide

Reduce CKM Risk

- Promote health
- Prevent progression
- Prioritize regression

Life's Essential 8 for CV Health (AHA)

Healthy diet

DASH-style eating pattern

Physical activity

Moderate-vigorous exercise, regularly each week

Avoiding nicotine

Avoid nicotine including nicotine delivery systems, secondhand smoke

Healthy sleep

Age-appropriate hours of sleep per night/per 24 hours

Healthy weight

Appropriate BMI percentile for age and sex (starting in infancy)

Healthy cholesterol

Total and non-HDL (starting at least by 9-11y, and earlier if indicated)

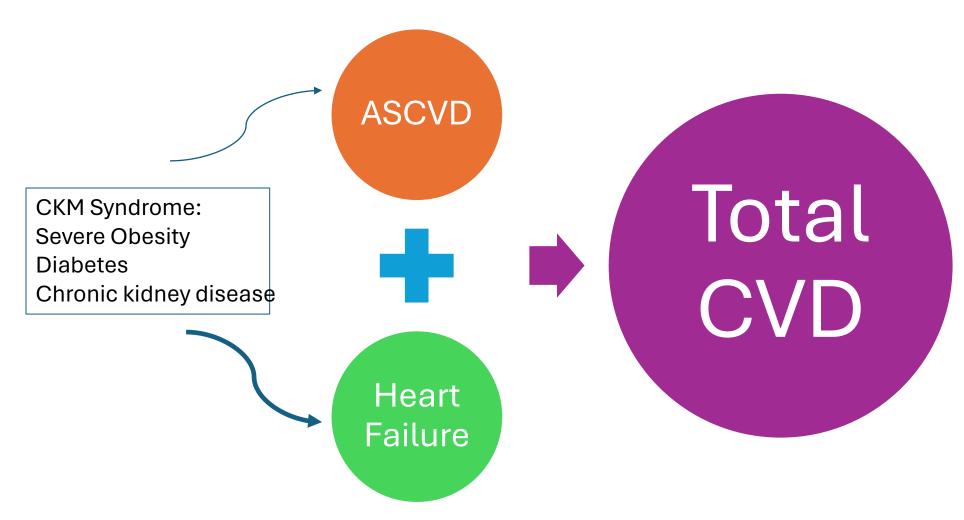
Healthy blood glucose

Fasting BG <100 mg/dL or A1c < 5.7% (starting age 10y)

Healthy blood pressure

Optimal BP for age, using appropriate-size cuff (starting no later than 3y)

Assessing CVD Risk


PREVENTTM equations for CVD risk estimation (NEW!)

- About 6.6 million individuals (average age = 53 yrs)
- 46 data sets: population studies and health-system electronic records
- Asian, Black, Hispanic and White participants

Advantages:

- Universal (race-free) approach
- Early risk assessment: for ages 30 70 years
 - Emphasizes primordial prevention and lifestyle
- Broadens CVD outcomes = total CVD risk
 - Estimates ASCVD <u>and</u> heart failure (high concordance)
 - Includes poor CKM health (severe obesity, diabetes, CKD)
 - Enhances preventive opportunities (SGLT2 inhibitors, GLP1 agonists)

CVD and Subtypes

PREVENTTM Equations

- Base Equation
 - Age, Sex
 - Systolic Blood Pressure (on Rx?)
 - Total and HDL Cholesterol (on Rx?)
 - Diabetes (Y/N)
 - Tobacco use (Y/N)
 - Kidney function = <u>eGFR</u>
- Full Equation (Optional)
 - Kidney function = UACR*
 - Diabetes control = HbA1c
 - Social deprivation index = zip code
 [social determinants of health]

American Heart
Association
Predicting Risk of
cardiovascular
disease EVENTs
(PREVENT)TM

*UACR = urinary albumin-to-creatinine ratio

PREVENTTM Online Calculator

CVD Risk Assessment	PCE ¹	PREVENT TM -base ²
55y female (White) - TC 240 mg/dL - HDL 45 mg/dL - SBP 110 (DBP 80) mmHg - BMI 28 kg/m^2 - eGFR 100 mL/min/1.73m^2 - DM=no - Current smoking=no - Rx for HTN/HLD=no	1.4% [10y] 39% [30y]	2.7% (10y] 17.6% [30y]

¹https://tools.acc.org/ascvd-risk-estimator-plus/#!/calculate/estimate/ ²https://professional.heart.org/en/guidelines-and-statements/prevent-calculator

Patient Case – Impact

CVD Risk Assessment	PCE ¹	P	REVENT TM -base ²	PREVENT TM - full ²
55y female (White) - TC 240 mg/dL - HDL 45 mg/dL - SBP 110 (DBP 80) mmHg - BMI 28 kg/m^2 - eGFR 100 mL/min/1.73m^2 - DM=no - Current smoking=no - Rx for HTN/HLD=no - UACR=0 mg/g - HgA1c=5.6% - Zip Code 43220	1.4% [10y] 39% [30y]		2.7% (10y] → 17.6% [30y] →	

PREVENTTM – Other Case Example

CVD Risk	PCE ¹	PREVENT TM - base ²	PREVENT TM -full ²
55y female (Black) - Other variables remain same	1.8% [10y] 39% [30y]	2.7% (10y] 17.6% [30y]	1.1% [10y] 10.2% [30y]
+ Kidney disease: - eGFR 50 - UACR 100	- N/A (risk enhancer)	 4.5% [10y] 21.8% [30y]	5.4% [10y] 22.5% [30y]

¹https://tools.acc.org/ascvd-risk-estimator-plus/#!/calculate/estimate/

²https://professional.heart.org/en/guidelines-and-statements/prevent-calculator

PREVENTTM – Other Case Example

CVD Risk	PCE ¹	PREVENT TM - base ²	PREVENT TM -full ²	Additional Scenarios		
55y female (Black) - Other variables remain same	1.8% [10y] 39% [30y]	2.7% (10y] 17.6% [30y]	1.1% [10y] 10.2% [30y] 	1.4% [10y] 12.0% [30y] (Zip 64147) 	1.6% [10y] 12.5% [30y] (A1c 8.0%)	2.0% [10y] 14.6% [30y] (Both)
+ Kidney disease: - eGFR 50 - UACR 100	N/A (risk enhancer)	4.5% [10y] 21.8% [30y]	5.4% [10y] 22.5% [30y]	6.7% [10y] 25.9% [30y] (Zip 64147)	7.4% [10y] 36.8% [30y] (A1c 8.0%)	9.1% [10y] 30.6% [30y] (Both)

¹https://tools.acc.org/ascvd-risk-estimator-plus/#!/calculate/estimate/

²https://professional.heart.org/en/guidelines-and-statements/prevent-calculator

PREVENTTM – Other Case Examples

CVD Risk	PCE ¹	PREVENT™- base²	PREVENT TM -full ²	Additional Scenarios		
55y female (Black) - Other variables remain same	1.8% [10y] 39% [30y]	2.7% (10y] 17.6% [30y]	1.1% [10y] 10.2% [30y]	1.4% [10y] 12.0% [30y] (Zip 64147)	1.6% [10y] 12.5% [30y] (A1c 8.0%)	2.0% [10y] 14.6% [30y] (Both)
	-		-			
+ Kidney disease: - eGFR 50	N/A (risk enhancer)	4.5% [10y] 21.8% [30y]	5.4% [10y] 22.5% [30y]	6.7% [10y] 25.9% [30y]	7.4% [10y] 36.8% [30y]	9.1% [10y] 30.6% [30y]
				Additional Scenarios		
CVD Risk	PCE ¹	PREVENT™- base²	PREVENT TM -full ²	Add	itional Scen	arios
69y male (Black) - Other variables remain same	PCE ¹ 9.6% [10y] N/A [30y]		3.1% [10y] N/A [30y]	3.9% [10y] (Zip 64147)	4.3% [10y] (A1c 8.0%)	5.4% [10y] (Both)
69y male (Black) - Other variables	9.6% [10y]	base ² 7.4% [10y]	3.1% [10y]	3.9% [10y]	4.3% [10y]	5.4% [10y]

Patient Case Condundrum?

Might this change preventive Rx: eg. statin?

CVD Risk	PCE ¹	PREVENT™- base²	PREVENT™-full²	Additional Scenarios		
69y male (Black) - Other variables remain same	9.6% [10y] N/A [30y]	7.4% [10y] N/A [30y]	3.1% [10y] N/A [30y]	3.9% [10y] (Zip 64147)	4.3% [10y] (A1c 8.0%)	5.4% [10y] (Both)
+ Kidney disease:			-			
- eGFR 50 - UACR 100	N/A (risk enhancer)	10.3% [10y]	12.2% [10y]	14.8% [10y] (Zip 64147)	16.3% [10y] (A1c 8.0%)	19.6% [10y] (Both)

¹https://tools.acc.org/ascvd-risk-estimator-plus/#!/calculate/estimate/

²https://professional.heart.org/en/guidelines-and-statements/prevent-calculator

Current Recommendations

Social Deprivation Index (SDI)¹

- Developed by Butler et al (2012)²
- Describes area-level deprivation data from American Community Survey
 - United States Census Bureau
 - Collected monthly, every year (differs from Decennial Census)
- Quantitative, composite measure
 - 7 demographic characteristics
 - Available by county, census tract, zip code, and Primary Care Service Areas
- [Not = Social Vulnerability Index]

SDI Components

% population < 100% of federal poverty level

% population 25 years or older, with < 12 years education

% non-employed, for populations 16-64 years

% households living in renter-occupied units

% households living in crowded housing units

(no. occupants/room \geq 1.01)

% single-parent families with dependents < 18 years

¹Social deprivation index (SDI) https://www.graham-center.org/rgc/maps-data-tools/sdi/social-deprivation-index.html; Nov 5, 2018

²Butler et al. BMC Health Serv Res 2013;48(2 Pt 1):539-59.

Implementation, Communication, Education

Implementation Considerations (Khan et al)

- Risk estimation

 Clinical decision making
 - Currently rely on risk level/classification to determine action
 - Low, intermediate, high/very high risk (and primary/secondary prevention) is usual
 - Prefer transition to "net benefit" approach (ARR, absolute risk reduction)
 - Absolute risk (AR) of CVD x relative risk reduction from treatment (RRR)
- CVD risk assessment/prevention → move earlier in timing
 - Complete life course, from birth through young adulthood to older age
 - PREVENTTM equations: ages 30-70 years
 - Apply/evaluate in first trimester of pregnancy, if applicable
- More research to refine equations
 - Data from diverse populations, additional social factors, and on whether prediction of kidney disease <u>progression</u> can optimize CVD risk assessment

Looking Ahead

 How might PREVENTTM equations be used in existing ACC/AHA framework?

 Potential for change in future guidelines: 2024/2025 - ACC/AHA - Hypertension • ACC/AHA Blood Cholesterol Proposed (timing?) • ACC/AHA Primary Prevention

Communication and Education (Khan et al)

- Priorities for near-term what can you do right now?:
 - 1. Historically, emphasis is on managing risk factors (negative construct)
 - -- Create emphasis on CV health in early CKM stages
 - Eg. Life's Essential 8
 - 2. Historically, focus is on ASCVD risk assessment/management
 - -- Focus also on conditions that co-occur/associate, and may have shared therapeutic strategies
 - Eg. heart failure, chronic kidney disease -> GLP1, SGLT2i

PREVENTTM Illustrations

Illustration of PREVENTTM base and additional equations

- Available at
 https://www.portailvasculaire.fr/site
 s/default/files/docs/2023_aha_khan
 ss_prevent_circulation.pdf
- Page 1991

Illustration of life course approach to CV health, staging of CKM health, and total CVD risk assessment

- https://www.portailvasculaire.fr/site
 s/default/files/docs/2023_aha_khan
 ss_prevent_circulation_ndf
- Page 1995

Summary

- CKM Syndrome is a novel framework recently defined by AHA
- Important, clinically-relevant estimation equations are being evolving toward race-free assessments
 - eGFR (kidney function)
 - CVD risk (ASCVD + heart failure risk)
- Social determinants of health are increasingly recognized as predictive variables for health outcomes, now and in future
 - Social Deprivation Index and others?
- Clinical implementation issues and changes in communication/ education regarding the novel framework will need addressed
 - May be included in upcoming, relevant CVD guidelines

Self-Assessment Questions

CKD Syndrome is defined as:

- A. A systemic disorder of overlapping health conditions: heart disease, kidney disease, obesity and/or diabetes
- B. The same criteria used to define metabolic syndrome: blood glucose and blood pressure, HDL cholesterol, triglycerides, and waist circumference
- C. The same criteria used to define chronic kidney disease: eGFR and urinary albumin to creatinine ratio (UACR)
- D. An X-linked recessive disorder characterized by mild-severe cognitive impairment, seizures, and physiologic malformations

Removing race from the calculation for kidney disease and CV disease assessment is appropriate because:

- A. Race is a social rather than biological construct
- B. A dichotomous race coefficient in mathematical formulae does not adequately represent racial diversity in the US, or inter-individual variations
- C. Historically, adequate representation across studies has been a limitation in development of estimation models
- D. All of the above

In the AHA PREVENTTM Equations, the variable(s) <u>not</u> included in the base formula is/are:

- A. eGFR
- B. BMI
- C. UACR
- D. Both A and C are not included

Social determinants of health are represented in the AHA PREVENT Equations as the:

- A. Vulnerable Populations Index (by county)
- B. Percentage of federal poverty level (by quartile)
- C. Social Deprivation Index (by zip code)
- D. Life's Essential 8 (by count)

True or False

 AHA has provided recommendations on how to utilize 10-year total CVD risk estimates within the framework of the 2019 Primary Prevention of CV Disease Guideline

References

American Heart Association (AHA). *PREVENTTM Online Calculator*. AHA Professional Heart Daily 2024 Jan. Available at https://professional.heart.org/en/guidelines-and-statements/prevent-calculator (Accessed Mar 5, 2024).

Khan SS, Coresh J, Pencina MJ, et al. American Heart Association. Novel Prediction Equations for Absolute Risk Assessment of Total Cardiovascular Disease Incorporating Cardiovascular-Kidney-Metabolic Health: A Scientific Statement From the American Heart Association. Circulation 2023 Dec 12;148(24):1982-2004.

Larkin H. What to Know about PREVENT, the AHA's New CVD Risk Calculator. Medical News & Perspectives, JAMA Network 2023 Dec 27. Available at jamanetwork.com/journals/jama/fullarticle/2813510; (accessed Mar 12, 2024)

Social deprivation index (SDI). Robert Graham Center-Policy Studies in Family Medicine & Primary Care. 2018 Nov 5. Available at from https://www.graham-center.org/rgc/maps-data-tools/sdi/social-deprivation-index.html (Accessed Mar 10, 2024).

Need More Information?

Maria C. Coyle, PharmD, FCCP, BCPS, BCACP, CLS coyle.167@osu.edu

