

UIA 42nd Annual Symposium

Ultrasonic Piezoelectric Transformers for Power Conversion

								PR	OPRIETAR		
U	ltra	High	n Vol	tage	e DC	-DC	Piez	ю-со	onve	erter	
1	00kV/	20W	Piezo	Supp	oly foi	r Neu	tron S	Source	e Gen	erator	
	Res freq	ults of th uency; fa	e modal a a = antire	analysis fo sonance i	or the ne frequenc	w very hi y; keff =	igh voltag effective	e PT (fr = coupling	= resonan coefficie	ce nt)	
	ATILA		L x W1 x H			L x W2 x H			L x W3 x H		
	ALLA	fr	fa	keff	fr	fa	keff	fr	fa	keff	
	BT4	10.015	10.015	0.88	10.068	10.068	1.24	10.100	10.100	。0.87	
	Т3	12.853	12.853	0.00	10.241	10.241	0.00	8.602	8.602	0.00	
	BW2	10.842	10.842	0.00	13.083	13.083	0.00	14.750	14.750	0.00	
	T4	17.349	17.775	0.72	14.236	14.236	0.00	12.175	12.175	0.00	
	BT5	14.638	14.638	15.94	14.705	14.706	0.72	14.700	14.700	0.00	
	L1	17.349	17.574	15.00	17.345	17.766	21.65	17.339	17.754	21.50	
	T5	22.625	22.625	0.00	18,735	18.735	0.00	16.390	16.390	0.00	
	BT6	20.331	20.333	1.51	20.398	20.400	1.50	19.726	19.727	1.08	
	BW3	18.833	18.833	0.00	21.846	21.846	0.00	23.860	23,860	0.00	
Th L1 fro wi	e stron . When om the idth size prove t	ger vibr the wid longitud to W2 he coup	ation mo dth size linal, th and W3 ling of tl	ode to a is W1, us decro 3, it is p he longi	the Ben easing it cossible tudinal	ergy cor Iding Tra ts coupl to sepa mode, w	iversion ansversa ing coef irate the rhich is t	is <u>the l</u> I BT5 m ficient. BT5 sp the one	ongitudi node is By mod purious of intere	nal mode very clos lifying th mode an est.	
'Inc	Apr	il 22, 2013			UI	A 42nd Anr	ual Sympo	osium			

