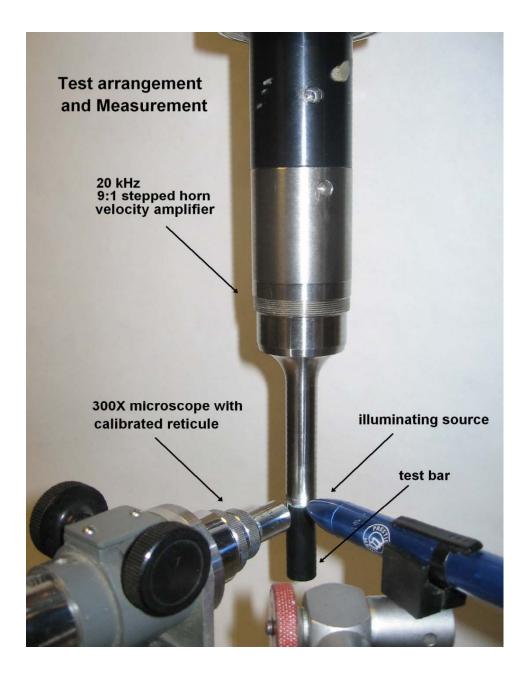

## Acoustic properties of selected high strength thermosetting plastic composites at ultrasonic frequencies

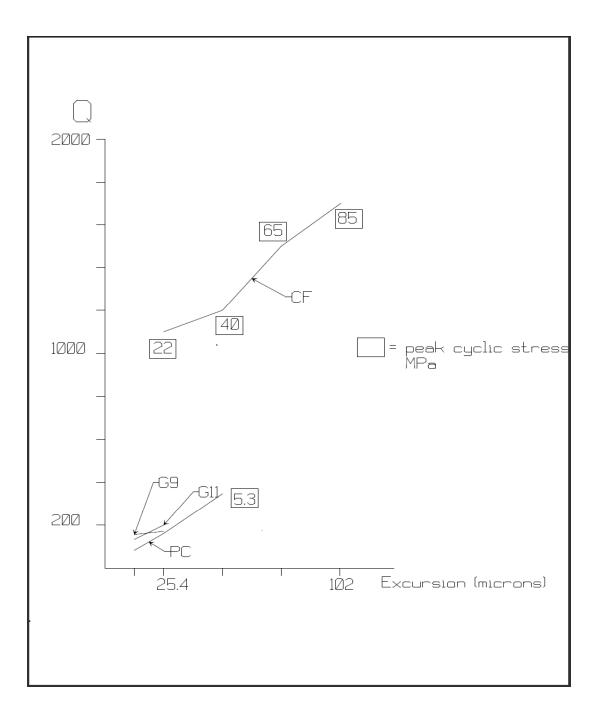

David Wuchinich Modal Mechanics © 2011 David Wuchinich












Q is defined as  $2\pi$ (Energy, E<sub>s</sub>, stored in vibration per cycle)/(Energy lost, E<sub>I</sub>, per cycle of vibration). From the power measurements, the vibration amplitude, the mass of the sample and the frequency of vibration, Q can be computed as:

$$Q = 2\pi \left(\frac{\left(\frac{1}{4}\right)mv^2}{\frac{P_t - P_q}{f}}\right)$$

Where m is the mass of the specimen, v is velocity of vibration of the free faces =  $2\pi fs/2$ , where s is the peak to peak excursion, P<sub>t</sub> is the power consumption measured with the specimen attached and P<sub>q</sub> the power at the <u>same</u> excursion measured for the transducer-horn alone and f is the resonant frequency. With the substitution, v =  $2\pi f(s/2)$ , s being the peak-peak excursion, made:

$$Q = \frac{\pi^3 m s^2 f^3}{2(P_t - P_q)}$$

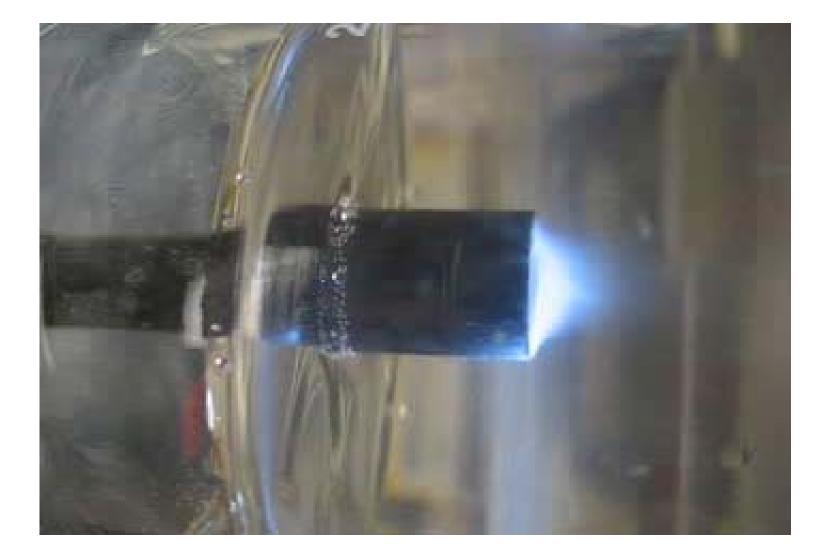


## Mechanical Properties of Carbon Fibre Composite Materials, Fibre / Epoxy resin (120°C Cure)

|                            | Symbol | Units    |      |      | E glass<br>Fabric |      | Std CF<br>UD | HMCF<br>UD | M55**<br>UD | E glass<br>UD | Kevlar<br>UD | Boron<br>UD | Steel<br>597 |     | Tit. dtd<br>5173 |
|----------------------------|--------|----------|------|------|-------------------|------|--------------|------------|-------------|---------------|--------------|-------------|--------------|-----|------------------|
| Young's Modulus 0°         | E1     | GPa      | 70   | 85   | 25                | 30   | 135          | 175        | 300         | 40            | 75           | 200         | 207          | 72  | 110              |
| Young's Modulus 90°        | E2     | GPa      | 70   | 85   | 25                | 30   | 10           | 8          | 12          | 8             | 6            | 15          | 207          | 72  | 110              |
| In-plane Shear Modulus     | G12    | GPa      | 5    | 5    | 4                 | 5    | 5            | 5          | 5           | 4             | 2            | 5           | 80           | 25  |                  |
| Major Poisson's Ratio      | v12    |          | 0.10 | 0.10 | 0.20              | 0.20 | 0.30         | 0.30       | 0.30        | 0.25          | 0.34         | 0.23        |              | -   |                  |
| Ult. Tensile Strength 0°   | Xt     | MPa      | 600  | 350  | 440               | 480  | 1500         | 1000       | 1600        | 1000          | 1300         | 1400        | 990          | 460 |                  |
| Ult. Comp. Strength 0°     | Xc     | MPa      | 570  | 150  | 425               | 190  | 1200         | 850        | 1300        | 600           | 280          | 2800        |              |     |                  |
| Ult. Tensile Strength 90°  | Yt     | MPa      | 600  | 350  | 440               | 480  | 50           | 40         | 50          | 30            | 30           | 90          |              |     |                  |
| Ult. Comp. Strength 90°    | Yc     | MPa      | 570  | 150  | 425               | 190  | 250          | 200        | 250         | 110           | 140          | 280         |              |     |                  |
| Ult. In-plane Shear Stren. | S      | MPa      | 90   | 35   | 40                | 50   | 70           | 60         | 75          | 40            | 60           | 140         |              |     |                  |
| Ult. Tensile Strain 0°     | ext    | %        | 0.85 | 0.40 | 1.75              | 1.60 | 1.05         | 0.55       |             | 2.50          | 1.70         | 0.70        | 1            |     |                  |
| Ult. Comp. Strain 0°       | exc    | %        | 0.80 | 0.15 | 1.70              | 0.60 | 0.85         | 0.45       |             | 1.50          | 0.35         | 1.40        | Ũ            |     |                  |
| Ult. Tensile Strain 90°    | eyt    | %        | 0.85 | 0.40 | 1.75              | 1.60 | 0.50         | 0.50       |             | 0.35          | 0.50         | 0.60        |              |     |                  |
| Ult. Comp. Strain 90°      | eyc    | %        | 0.80 | 0.15 | 1.70              | 0.60 | 2.50         | 2.50       |             | 1.35          | 2.30         | 1.85        |              |     |                  |
| Ult. In-plane shear strain | es     | %        | 1.80 | 0.70 | 1.00              | 1.00 | 1.40         | 1.20       |             | 1.00          | 3.00         | 2.80        |              |     |                  |
| Thermal Exp. Co-ef. 0°     | Alpha1 | Strain/K | 2.10 | 1.10 | 11.60             | 7.40 | -0.30        | -0.30      | -0.30       | 6.00          | 4.00         | 18.00       |              |     |                  |
| Thermal Exp. Co-ef. 90°    | Alpha2 | Strain/K | 2.10 | 1.10 | 11.60             | 7.40 | 28.00        | 25.00      | 28.00       | 35.00         | 40.00        | 40.00       |              |     |                  |
| Moisture Exp. Co-ef 0°     | Beta1  | Strain/K | 0.03 | 0.03 | 0.07              | 0.07 | 0.01         | 0.01       |             | 0.01          | 0.04         | 0.01        |              |     |                  |
| Moisture Exp. Co-ef 90°    | Beta2  | Strain/K | 0.03 | 0.03 | 0.07              | 0.07 | 0.30         | 0.30       |             | 0.30          | 0.30         | 0.30        |              |     |                  |
| Density                    |        | g/cc     | 1.60 | 1.60 | 1.90              | 1.40 | 1.60         | 1.60       | 1.65        | 1.90          | 1.40         | 2.00        | Ĩ.           |     |                  |

Fibres @ 0° (UD), 0/90° (fabric) to loading axis, Dry, Room Temperature, Vf = 60% (UD), 50% (fabric)

## Fibres @ +/-45 Deg. to loading axis, Dry, Room Temperature, Vf = 60% (UD), 50% (fabric)


|                         | Symbol | Units    | Std. CF  | HM CF    | E Glass | Std. CF<br>fabric | E Glass<br>fabric | Steel  | Al     |
|-------------------------|--------|----------|----------|----------|---------|-------------------|-------------------|--------|--------|
| Longitudinal Modulus    | E1     | GPa      | 17       | 17       | 12.3    | 19,1              | 12.2              | 207    | 72     |
| Transverse Modulus      | E2     | GPa      | 17       | 17       | 12.3    | 19.1              | 12.2              | 207    | 72     |
| In Plane Shear Modulus  | G12    | GPa      | 33       | 47       | 11      | 30                | 8                 | 80     | 25     |
| Poisson's Ratio         | v12    |          | .77      | .83      | .53     | .74               | .53               |        |        |
| Tensile Strength        | Xt     | MPa      | 110      | 110      | 90      | 120               | 120               | 990    | 460    |
| Compressive Strength    | Xc     | MPa      | 110      | 110      | 90      | 120               | 120               | 990    | 460    |
| In Plane Shear Strength | S      | MPa      | 260      | 210      | 100     | 310               | 150               |        |        |
| Thermal Expansion Co-ef | Alpha1 | Strain/K | 2.15 E-6 | 0.9 E-6  | 12 E-6  | 4.9 E-6           | 10 E-6            | 11 E-6 | 23 E-6 |
| Moisture Co-ef          | Beta 1 | Strain/K | 3.22 E-4 | 2.49 E-4 | 6.9 E-4 |                   |                   |        |        |

\*\* Calculated figures

These tables are for reference / information only and are  $\rm NOT$  a guarantee of performance 1 GPa = 1000 MPa = 1000 N/mm^2 = 145,000 PSI

These tables relate to only 2 of the many fibre orientations possible. Most components are made using combinations of the above materials and with the fibre orientations being dictated by the performance requirements of the product. Performance Composites Ltd. can assist with the design of components where appropriate.

## 65 micron excursion, CF half wavelength resonator in water

