

Transducer Arrays for Ultrasonic Particle Manipulation

Christine Demore, Yongqiang Qiu, Sandy Cochran

Institute for Medical Science and Technology, University of Dundee, Dundee, United Kingdom

Peter Glynne-Jones, Congwei Ye, Martyn Hill School of Engineering Sciences University of Southampton, Southampton, United Kingdom

Southampton

Outline

Introduction

Ultrasonic particle manipulation Finite element modelling Experimental validation Conclusions

INTRODUCTION

Electronically controlled acoustic particle manipulation for life sciences research

University of Glasgow

HIGH FREQUENCY US TRANSDUCER FABRICATION

UNIVERSITY ON

DUNDEE

Ο

Southampton

Electronic Sonotweezers

- Ultrasonic particle manipulation tools enable:
 - Manipulation of larger particles, cells and groups of cells compared to other manipulation technologies
 - Dimensions of less than 1 µm up to hundreds of microns
- Ultrasound devices are readily integrated with microfluidic devices and electronics
- Aim of Sonotweezers:

Dexterous acoustic manipulation

Electronic Sonotweezers

- Applications of **Sonotweezers** include:
 - Separation and sorting of cells
 - Investigation of cell characteristics
 - Measurements of cell forces
 - Tissue engineering
 - Positioning cells at sensors
- Many applications require manipulation force in more than one direction

Current Tweezing Technology

Optical Tweezing

02-02-03 OT Levovist CA LG I=2 Hologram x100 obs. obj. x63 tweezing obj.

Lateral manipulation possible by steering optical trap with mirrors

Images courtesy Mike MacDonald and Paul Prentice, IMSaT, University of Dundee

Ultrasonic Particle Manipulation

- Transducer forms ultrasound standing wave (USW) in channel
- Acoustic field is effectively constant along length of channel

P. Glynne-Jones et. al., "Ultrasonic radiation forces for cell sorting and characterisation," UIA Symposium, Glasgow, UK, 23 May 2011.

Ultrasonic Manipulation with Arrays

- Array replaces single transducer in USW device
- More dexterity than USW device with single element
- Can manipulate larger particles than optical tweezers

Ultrasonic Manipulation Forces

• Force on particles is towards:

Pressure node ↔ Potential energy minimum Velocity maximum ↔ Kinetic energy maximum

Resonator and Array Design

Resonance frequency: 2.5 MHz Channel thickness: 300 µm Reflector thickness: 300 µm Transducer thickness: 1 mm Element pitch: 500 µm

FINITE ELEMENT MODELLING

Finite Element Model

Transducer Array

Layer	Material	Thickness
Reflector	Glass	300 µm
Fluid	Water	300 µm
Carrier	Glass	300 µm
Transducer	PZ26	1000 µm

Acoustic Energy Distributions

Kinetic Energy Trapping position: at maximum

Calculated Force Distributions

Vertical / Lateral Force: 100

Kinetic Energy Densities

1 Element Active

2 Elements Active

3 Elements Active

EXPERIMENTAL VALIDATION

1D Array Fabrication

Fabrication Process

- 1. Embed piezoceramic plate in microbaloon loaded epoxy
- 2. Lap transducer plate
- 3. Deposit electrodes on surfaces of piezoceramic plate
- 4. Affix PCB to back face of transducer substrate
- 5. Connect tracks on PCB to transducer electrode with conductive epoxy
- 6. Dice through transducer electrode and conductive paste to separate element electrodes

Fabricated Array

Transducer dimensions	4 mm x 6 mm
Transducer plate thickness:	1 mm
Element pitch:	500 µm
Array elements:	12

Experimental Setup

- Capillary coupled to array with glycerol
- Capillary channel filled with suspension of 10 µm fluorescent polystyrene beads in water
- Drive: 2 elements
 - 17 Volts CW @ 2.408 MHz
 - Connection switched along array

Housing

Glass capillary

Transducer Plate (front face)

PCB and connectors

Results: Trapping Particles

Agglomerate length:	650 µm
Vertical force measurement:Balance acoustic radiation force with gravity	180 pN
Lateral force measurement:Determine force from drag on particle	2 pN
Vertical / Lateral force:	90

Results: Moving of Beads in Channel

- Connector switched along 6 elements
- Beads move 3 mm along channel
- Particles moved smoothly and consistently along microfluidic channel

Results: Moving beads along channel

Summary & Conclusions

- 2.5 MHz, 1-D array in planar resonator developed for acoustic particle or cell manipulation in microfluidic device.
 - Resonator structure forces particles to centre of fluid channel
 - Switching subset of active elements forces particles to centre of active area and moves particles along channel
- Simulation confirms expected trapping points at pressure node and velocity maximum
- Experiment demonstrates feasibility of electronically controlled lateral manipulation

Industrial Collaborators

- Agilent Technologies
- Genetix Ltd.
- Loadpoint Ltd.
- Logitech Ltd.
- PCT Ltd.
- UK Defence Science and Technology
 Labs
- Weidlinger Associates, Inc.

Acknowledgments

- David Brennan, Southampton University
- Alex Anderson, University of Dundee
- Microengineering and Biomaterial Research Group, University of Dundee
- Sonotweezers collaborators at University of Bristol and University of Glasgow
- Funding from UK Engineering and Physical Sciences Research Council