High Intensity Therapeutic Ultrasound Ablation of Tendons Ex Vivo

Robert Muratore, Ph.D.
Frederic L. Lizzi Center for Biomedical Engineering
Riverside Research Institute, New York NY USA

Tal Akabas
Cornell University, Ithaca NY USA

Isabella B. Muratore
Portledge School, Locust Valley NY USA

UIA 2008-04-02 Washington DC USA
Background
Clinical presentation

strenuous, repetitive motion (e.g., athletics)

- Stenlund 1993
- Kettunen 2006

tendinopathy

- Warden 2007

tendinosis

- Wired 2007
Structural causes

collagen fibril length & cross-linking

regrowth is disordered

Silver 2003
Vanderby 2003

McShane 2006

disordered collagen is weaker

tensile tendon strength
Current treatments

- Local injections of steroids and anesthetics
 - Skin puncture, limited relief
 McShane 2006

- Percutaneous tenotomy by blade
 - Accessibility of blade, incision of overlying tissue
 Maffuli 1997

- Percutaneous tenotomy by needle
 - Skin puncture, patient resistance
 McShane 2006

- Physical therapy
 - Limited *per se*, patient commitment
 Christenson 2007

- Extracorporeal shock wave therapy
 - Limited effectiveness for non-calcific disease
 Harniman 2004
 - Broad (82 mm x 20 mm) focal region, difficult to aim
 Cleveland 1998
Ultrasound-guided therapy

preliminary ultrasound findings

needle tenotomy

from McShane 2006
HITU & collagen

rabbit scleral cross sections
HITU @ 4.6 MHz, 2 kW/cm², 5 s
from Coleman 1985

untreated
thick collagen fibrils

immediately post-HITU
many fibrils are dissociated

3 months post-HITU
new fibroblasts and new collagen fibrils

~ 1 μm
Attenuation in collagen

\[\alpha \approx 2.9 \text{ dB MHz}^{-1} \text{ cm}^{-1} \]

Can HIFU penetrate and ablate thick tendon?

\[I = I_{\text{free}} e^{-\frac{2}{\alpha} f \Delta x} \]

- \(I \): intensity
- \(I_{\text{free}} \): from Rayleigh-Sommerfeld
- \(\alpha \): attenuation coefficient
- \(f \): frequency
- \(\Delta x \): path length

Data from Goss 1979
Methods
Achilles tendon

bovine deep digital flexor

Dyce 2002
Models

PBS 23 °C, 37 °C

tendon
rubber

bare tendon model

PBS 37 °C

muscle
tendon
glass

layered model

30° 0°

10 mm
Transducer

5 annuli
central diagnostic array

Sonic Concepts therapy
33 mm diameter
7.0 W to 9.3 W
focal region
 35 mm axial position
 0.28 mm diameter
 2.5 mm length
Results
Bare tendon ablation

5.25 MHz
0.55 kW/cm²
5 s
6 mm deep
23 °C
Lesion sizes are consistent: 23 °C

<table>
<thead>
<tr>
<th>model</th>
<th>temperature °C</th>
<th>intensity kW/cm²</th>
<th>time s</th>
<th>depth mm</th>
<th>angle °</th>
<th>length mm</th>
<th>width mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>bare tendon</td>
<td>23</td>
<td>0.55</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>3.60</td>
<td>1.92</td>
</tr>
<tr>
<td>bare tendon</td>
<td>23</td>
<td>0.55</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>3.60</td>
<td>2.52</td>
</tr>
<tr>
<td>bare tendon</td>
<td>23</td>
<td>0.55</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>2.88</td>
<td>1.80</td>
</tr>
<tr>
<td>bare tendon</td>
<td>23</td>
<td>0.55</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>2.76</td>
<td>1.68</td>
</tr>
<tr>
<td>bare tendon</td>
<td>23</td>
<td>0.55</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>2.28</td>
<td>1.20</td>
</tr>
<tr>
<td>bare tendon</td>
<td>23</td>
<td>0.55</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>2.76</td>
<td>2.04</td>
</tr>
</tbody>
</table>

\[
I = I_{\text{free}} e^{-2\alpha f \Delta x}
\]

in-situ intensity estimate

\[
\alpha = 2.9 \text{ dB MHz}^{-1} \text{ cm}^{-1}, \quad f = 5.25 \text{ MHz}, \quad \Delta x = \text{depth}
\]
Lesion sizes are consistent: 37 °C

<table>
<thead>
<tr>
<th>model</th>
<th>temperature °C</th>
<th>intensity* kW/cm²</th>
<th>time s</th>
<th>depth mm</th>
<th>angle °</th>
<th>length mm</th>
<th>width mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>bare tendon</td>
<td>37</td>
<td>0.90</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>3.56</td>
<td>1.64</td>
</tr>
<tr>
<td>bare tendon</td>
<td>37</td>
<td>0.90</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>4.39</td>
<td>1.79</td>
</tr>
<tr>
<td>bare tendon</td>
<td>37</td>
<td>0.90</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>4.03</td>
<td>1.51</td>
</tr>
<tr>
<td>bare tendon</td>
<td>37</td>
<td>0.90</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>3.20</td>
<td>2.10</td>
</tr>
<tr>
<td>bare tendon</td>
<td>37</td>
<td>0.90</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>3.72</td>
<td>1.67</td>
</tr>
<tr>
<td>bare tendon</td>
<td>37</td>
<td>0.90</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>3.10</td>
<td>2.29</td>
</tr>
</tbody>
</table>

\[I = I_{\text{free}} e^{-2 \alpha f \Delta x} \]

* in-situ intensity estimate
\[\alpha = 2.9 \, \text{dB MHz}^{-1} \, \text{cm}^{-1}, f = 5.25 \, \text{MHz}, \Delta x = \text{depth} \]
1 & 2: intramural lesions with no damage to overlying tissue

<table>
<thead>
<tr>
<th></th>
<th>kW/cm²</th>
<th>Muscle Damage (mm)</th>
<th>Tendon Damage (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>8.2</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>7.2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>2.7</td>
<td>8.4</td>
<td>0</td>
</tr>
</tbody>
</table>

5.25 MHz
10 s

Muscle folded back and split post-ablation
Layered model ablation - 2

- Muscle folded back post-ablation
- Tendon split post-ablation

<table>
<thead>
<tr>
<th>#</th>
<th>kW/cm²</th>
<th>Muscle</th>
<th>Tendon</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>9 mm</td>
<td>7 mm</td>
<td>20 s</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>9 mm</td>
<td>7 mm</td>
<td>18 s</td>
</tr>
<tr>
<td>3</td>
<td>0.1</td>
<td>9 mm</td>
<td>7 mm</td>
<td>18 s</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
<td>9 mm</td>
<td>7 mm</td>
<td>15 s</td>
</tr>
<tr>
<td>5</td>
<td>0.1</td>
<td>9 mm</td>
<td>7 mm</td>
<td>12 s</td>
</tr>
</tbody>
</table>

M "marker" lesion

Beam 20° incidence

5.25 MHz
Angles & intensities, layered model

<table>
<thead>
<tr>
<th>model</th>
<th>temperature °C</th>
<th>intensity * kW/cm²</th>
<th>times</th>
<th>depth mm</th>
<th>θ angle °</th>
<th>mean length mm</th>
<th>mean width mm</th>
<th>number</th>
</tr>
</thead>
<tbody>
<tr>
<td>layered</td>
<td>37</td>
<td>0.23</td>
<td>10</td>
<td>7</td>
<td>15</td>
<td>3.97</td>
<td>2.76</td>
<td>4</td>
</tr>
<tr>
<td>layered</td>
<td>37</td>
<td>0.25</td>
<td>10</td>
<td>7</td>
<td>5</td>
<td>3.46</td>
<td>2.31</td>
<td>6</td>
</tr>
<tr>
<td>layered</td>
<td>37</td>
<td>0.25</td>
<td>10</td>
<td>7</td>
<td>0</td>
<td>5.92</td>
<td>2.19</td>
<td>6</td>
</tr>
<tr>
<td>layered</td>
<td>37</td>
<td>0.26</td>
<td>10</td>
<td>6</td>
<td>0</td>
<td>4.51</td>
<td>1.86</td>
<td>2</td>
</tr>
<tr>
<td>layered</td>
<td>37</td>
<td>0.32</td>
<td>10</td>
<td>6</td>
<td>0</td>
<td>4.07</td>
<td>2.06</td>
<td>1</td>
</tr>
<tr>
<td>layered</td>
<td>37</td>
<td>0.34</td>
<td>10</td>
<td>6</td>
<td>0</td>
<td>4.48</td>
<td>2.32</td>
<td>3</td>
</tr>
</tbody>
</table>

* *in-situ* intensity estimate

\[
\alpha_{\text{muscle}} = 0.5 \ \text{dB MHz}^{-1} \ \text{cm}^{-1}, \ f = 5.25 \ \text{MHz}, \ \Delta x \approx 1 \ \text{cm/cos} \ \theta
\]

\[
\alpha_{\text{tendon}} = 2.9 \ \text{dB MHz}^{-1} \ \text{cm}^{-1}, \ f = 5.25 \ \text{MHz}, \ \Delta x = \text{depth/cos} \ \theta
\]
Conclusions

- HITU can ablate tendon *ex vivo*
- Lesions are consistent
- Subsurface ablation spares overlying soft tissue
- Frequency, intensity, and time
 - readily achievable
 - clinically convenient
- Relative insensitivity to 20° angle & 30% intensity variations

Promising for future clinical tendinosis applications
This work was supported in part by the Riverside Research Institute Fund for Biomedical Engineering Research.

We are grateful to the following for their invaluable contributions:

Andrew Kalisz, M.S.
Riverside Research Institute

Ernest J. Feleppa, Ph.D.
Riverside Research Institute

Levon N. Nazarian, M.D.
Thomas Jefferson University

Flemming Forsberg, Ph.D.
Thomas Jefferson University

Harriet O. Lloyd, B.S.
Weill Medical College, Cornell University

Acknowledgements

Thank you!
References - 1

Christenson RE.
Effectiveness of specific soft tissue mobilizations for the management of Achilles tendinosis: single case study--experimental design.

Cleveland RO, Lifshitz DA, Connors BA, Evan AP, Willis LR, Crum LA.
In vivo pressure measurements of lithotripsy shock waves in pigs.

Therapeutic ultrasound in the treatment of glaucoma. I. Experimental model.

Dyce KM, Sack WO, Wensing CJG.
Textbook of Veterinary Anatomy. Third ed.

Goss SA, Frizzell LA, Dunn F.
Ultrasonic absorption and attenuation in mammalian tissues.
References - 2

Harniman E, Carette S, Kennedy C, Beaton D.
Extracorporeal shock wave therapy for calcific and noncalcific tendonitis of the rotator cuff: a systematic review.

Kettunen JA, Kujala UM, Kaprio J, Sarna S.
Health of master track and field athletes: a 16-year follow-up study.

Maffulli N, Testa V, Capasso G, Bifulco G, Binfield PM.
Results of percutaneous longitudinal tenotomy for Achilles tendinopathy in middle- and long-distance runners.

McShane JM, Nazarian LN, Harwood MI.
Sonographically guided percutaneous needle tenotomy for treatment of common extensor tendinosis in the elbow.

Seil R, Wilmes P, Nuhrenborger C.
Extracorporeal shock wave therapy for tendinopathies.
References - 3

Silver FH, Freeman JW, Seehra GP.

Stenlund B, Goldie I, Hagberg M, Hogstedt C.

Vanderby R, Provenzano PP.

Warden SJ.

Wired Magazine.
How To Build a Better Body. 2007 Jan;15(01).