# UIA Symposium 2007

### 36 kHz Ultrasonic Surgical Horns

### for Endoscopic-Nasal Approaches to Brain Tumors

D.J. Cotter, M. Benson, M. Shinopulos, J. O'Connor, and M.K.M. Smith

Integra Radionics, Burlington MA, USA



#### **Outline:**

- Background
  - Ultrasonic surgical aspirators and clinical applications
  - Modified Kleesattel Gaussian (Ampulla) horn basis and references
- Generation of new horn profiles
  - 1-D physical mathematical models
- Solid Model FEM (Finite Element Method)
  - 3-D Mechanica analysis and simulation
  - Essential to modeling and simulation of complex contours with asymmetric geometries
  - Half model approach utilizing constraints and a base excitation
  - Full model approach utilizing a forcing function with damping and no artificial constraints
  - Stroke typically predicted with 3 µm or 2 % error
  - SaberTip stroke predicted within 8 µm or 6.5 % error
  - Both methods of FEM analysis indicate allowed stress at or below baseline surgical horns employed for 10 years
  - Allowed stress about 1/3 yield strength of materials
  - Resonant frequency target attained in fabrication
- Results
- Summary and Conclusions

#### Background on Ultrasonic Surgical Aspirators

#### **Ultrasonic Surgical Aspirators and Horns (Tips):**

- Removal of tumors and diseased tissue in neurosurgery, general surgery, gynecological, liver, spine, and some orthopedic applications
- CUSA EXcel utilizing 15 horns (surgical tips) of 36 kHz and 23 kHz, and these horns have been used in surgical applications for 10 to 30 years
- Polymer irrigation flue surrounding the horn and two pre-aspiration holes located in proximity to the distal end
- Continuous circuit of cooling irrigation liquid
- Dilute blood and further wet aspirated tissue
- Prevent coagulation and occlusion





#### **Extensive References in Planned IEEE UFFC Transactions Paper**

#### References on ultrasonic aspirators and endoscopic nasal approach

- C. Kleesattel, Acustica 12[1962],322.
- E. Eisner and J. S. Seager, "A Longitudinally Resonant Stub for Vibrations of Large Amplitude", SMRE, Research Report No. 216, October, 1963, pp 1-51.
- D. G. Wuchinick, A. Broadwin, and R. P. Anderson, "Ultrasonic Aspirator", U.S. Patent 4 063 557, Dec. 20, 1977.
- L. Balamuth, C. Kleesattel, and A. Kuris, "Supply and Control Apparatus for Vibratory Cutting Device", U.S. Patent 3 213 537, Oct. 26, 1965, Original Application Dec 24, 1954, Ser. No. 477,530.
- E. S. Flamm, J. Ransohoff, D. Wuchinich, and D. Broadwin, "A Preliminary Experience with Ultrasonic Aspiration in Neurosurgery", Neurosurgery 2:240-245;1978.
- R. Stoddard and A. J. Reschke, "Ultrasonic Surgical Apparatus", U.S. Patent 6 124 017, Apr. 10, 2001.
- G. Bromfield and J. J. Vaitekunas, "Internal Ultrasonic Tip Amplifier", U.S. Patent 5 879 364, Mar. 9, 1999.
- A. Kassam, C. H. Snyderman, A. Mintz, P. Gardner, and R. L. Carrau, "Expanded endonasal approach: the rostrocaudal axis. Part I. Crista galli to the sella turcia", Neurosurg Focus 19(1):E3, 2005.

#### **Extensive References in Planned IEEE UFFC Transactions Paper**

- References on surgical bone tips
  - H. Nakagawa, S. D. Kim, J. Mizuno, Y. Ohara, and K. Ito,
     "Technical advantages of an ultrasonic bone curette in spinal surgery", J Neurosurg Spine, 2005 Apr;2(4):431-5.
  - J. D. Klopfenstein and R. F. Spetzler, "Ultrasonic Aspirator Tip Variations: Instrumentation Assessment", Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, Barrow Quarterly Vol. 20, No. 3, 2004.
  - Y. Satou, "Ultrasonic Hand Piece and Ultrasonic Horn For Use With Same", U.S. Patent 6 497 715 B2, Dec. 24, 2002.

#### **Extensive References in Planned IEEE UFFC Transactions Paper**

#### References on modeling and general applications

- W. P. Mason and R. F. Wick," J. Acoust. Soc. Am. 23, 209-214 (1951).
- S. Sherrit, B. P. Dolgin, Y. Bar-Cohen, D. Pal, J. Kroh, and T. Peterson, "Modeling of Horns for Sonic/Ultrasonic Applications", in *Proc.* IEEE Ultrasonics Symposium, 1999, pp 647-651.
- S. Sherrit, S. P. Leary, B. P. Dolgin, and Y. Bar-Cohen, "Comparison of the Mason and KLM Equivalent Circuits for Piezoelectric Resonators in Thickness Mode", in *Proc.* IEEE Ultrasonics Symposium, 1999.
- L. Parrini, "New Methodology for the Design of Advanced Ultrasonic Transducers for Welding Devices", in *Proc.* IEEE Ultrasonics Symposium, 2000.
- D. Ensminger, "Ultrasonics Fundamentals Technology Applications", 2<sup>nd</sup> ed., New York:Marcel Dekker, Inc, 1988.





# **Newly Released Surgical Tips**

- Extended MicroTip Plus
  - Supports the fullest extent of brain surgery through the nose in endoscopic-nasal, transsphenoidal, or neuroendoscopy approaches
- SaberTip
  - Cutting or abrading bone encountered given approaches to deeper regions of the brain, extending openings in bony cavities, or sectioning bone to reveal underlying surgical sites



# **36 kHz Extended MicroTip Plus**



8





- As abrasive pad angle becomes greater, surgical tip must be angled greater to normalize to bone surface, and the 10° inverse cone is a compromise
- Avoids protrusions and sharp edges that may present a greater hazard in insertion
- Smooth contours and pyramids nearly fully formed but dull, like a knurl
- Smooth contour of distal end and local major diameter of exponential aid in parting soft tissue in the approach to the surgical site
- Pre-aspiration holes enable use in other than vertically down orientation
- Combines bone tip functionality with an aspirating surgical tip

### **Background:**

- Endoscopic-Nasal Surgery in sphenoid sinus region using SaberTip
- Creating a cavity to aid in reduction of cranial pressure
- Removal of bone on dura
- Viewed with endoscope via second nostril



## FEM Solid Model - 36 kHz Transducer



- Nominally, 35,750 Hz target resonant frequency
- Resonant system: core-stack, button, connecting body, and tip (horn)

# Horn (Surgical Tip)



### **Gaussian Horn Area Function**



### **Gaussian Horn Profile**



## **Gaussian Horn Profile**



x (mm)



After Kleesattel, where  $\omega$  is angular frequency,  $C_g$  is the acoustic velocity,  $L_{tip}$  is the length of the tip, and  $f_i$  is the resonant frequency

### **1-D Physical-Mathematical Modeling**



## **1-D Physical-Mathematical Modeling**



# FEM Solid Model - 36 kHz Transducer and SaberTip

# **Solid Model**



### **Design Frequency Analysis Excitation Approaches**

### Half Model with Base Excitation

- Half model approach utilizes constraints and a base excitation
- Constraints are needed to support analysis of the half model and to couple in a base acceleration excitation
- Constraints prevent movement of the material across the cut plane of the half model, thereby ensuring the model is not violated
- Vibration inducing acceleration is coupled to the component or assembly under evaluation via the constraints
- CUSA ultrasonic controller provides closed-loop control of the stroke of the transducer core-stack
- Displacement established at 5 µm peak (stroke of 10 µm peak-peak)
- Acceleration used in the base excitation is established to provide this magnitude of core-stack displacement
- Setting core-stack displacement can generally be accomplished on the second pass of the analysis using a simple linear adjustment

### **Design Frequency Analysis Excitation Approaches**

### **Full Model with Forcing Function**

- Full model approach utilizes a forcing function with damping and no artificial constraints
- Force employed is that magnitude of nodal force (980 N) provided by the 36 kHz transducer at 100% stroke amplitude
- Damping in forcing function established to provide controlled magnitude of core-stack displacement 5 µm peak (stroke of 10 µm peak-peak)
- Enables full motion of the components and assembly to be evaluated independent of artificial constraints
- Constraints could mask modes that contribute to errant motion
- Constraints contribute to artificially high frequency in modal analysis and higher stresses: constraints make component appear stiffer
- Half model still executed to save time in initial analysis and because design of the baseline horns utilized this approach
- Half model indicates dominant modes (4 or 5 allowed frequencies for horns discussed) in broadband analysis (10 kHz – 50 kHz)
- Full model analysis executed with narrow band about resonance

### **Design Frequency Analysis Excitation Approaches**



23

### **Global Approach for Mechanica Analysis**

#### Half Model

- Broadband Modal Analysis
  - Yields dominant nodes
- Design Frequency Analysis
  - Base excitation or forcing function (halve force)
  - Yields peak displacements, stresses, strains, etc
  - Faster execution with narrower band (< 1 hr)</li>
  - Iterative design-analysis
- Master Interval Analysis
  - About resonance
  - Query of displacements, stresses, strains, etc
  - Unambiguous view of interior stress concentrations, mechanical gain, etc

### **Full Model – Forcing Function**

- Narrow Band Modal Analysis
  - Yields many modes for review
- Design Frequency Analysis
  - Forcing function with damping
  - Execution time (e.g., less than 2 hr)
  - Assurance of resonant peak displacement and stress data
  - At frequency steps and over analysis
  - By component and selected geometry
- Master Interval Analysis
  - About resonance, taking 3-5 hours
  - Simulation of motion, stress and strain distribution, and data query
  - Unambiguous view of mechanical gain, stress concentrations, node and anti-node locations, and confirmation of nodal forces

### **Design Frequency Analysis - 36 kHz SaberTip**

36 kHz SaberTip - Half Model Surface Constraints





### **Design Frequency Analysis - 36 kHz SaberTip**

36 kHz SaberTip - Full Model, Forcing Function



### Master Interval Analysis - 36 kHz SaberTip

# **Displacement at Resonance**



### Master Interval Analysis - 36 kHz SaberTip



#### Master Interval Analysis - 36 kHz SaberTip

# **Simulation of Horn Displacement at Resonance**



## 36 kHz Extended Standard Tip: Mechanica Simulation of Displacement



### 36 kHz Extended Standard Tip: Mechanica Simulation of Stress





### **Master Interval Design Frequency Analysis**

- Simulations exhibiting spatial distribution of stress
- Dynamic query afforded
- Shows uniform strain of Gaussian profile
- Maintain strain over greatest Gaussian length allowed by frequency



#### **Master Interval Design Frequency Analysis**

- Strain contributing to mechanical gain of the horn is low enough when encountering the stress concentrating pre-aspiration holes to keep the maximum hole stress within acceptable limits
- Maximum stress in the horn is not at the pre-aspiration holes

#### Master Interval Analysis - 36 kHz Extended Standard Tip

36 kHz Extended Standard Tip - Full Mode Forcing Function



# 36 kHz Transducer and Extended MicroTip Plus





# Summary of Finite Element Analysis – 36 kHz SaberTip

|                                        | SaberTip<br>Forcing Function | SaberTip<br>Base Excitation<br>Surface Constraints | MicroTip<br>Forcing Function<br>Baseline | MicroTip<br>Base Excitation<br>Surface Constraints<br>Baseline |                                |
|----------------------------------------|------------------------------|----------------------------------------------------|------------------------------------------|----------------------------------------------------------------|--------------------------------|
| Stack Displacement peak (µm)           | 5                            | 5                                                  | 5                                        | 5                                                              | - Normalized                   |
| Stack Acceleration (m/s <sup>2</sup> ) | 272 x10 <sup>3</sup>         | 295 x10 <sup>3</sup>                               | 267 x10 <sup>3</sup>                     | 287 x10 <sup>3</sup>                                           |                                |
| Horn von Mises Stress (MPa)            | 252                          | 317                                                | 252                                      | 319                                                            | <ul> <li>Maintained</li> </ul> |
| Horn Stroke peak-peak (µm)             | 117                          | 124                                                | 178                                      | 193                                                            | - Simulated                    |
| Horn Acceleration (m/s <sup>2</sup> )  | 3.09x10 <sup>6</sup>         | 3.43 x10 <sup>6</sup>                              | 4.65 x10 <sup>6</sup>                    | 5.18 x10 <sup>6</sup>                                          |                                |
| Resonant Frequency (Hz)                | 36,925                       | 37,362                                             | 36,614                                   | 36,938                                                         |                                |
| Input Forcing Function (N)             | 978                          | -                                                  | 978                                      | -                                                              |                                |
| Input Damping (%)                      | 3.483                        | -                                                  | 2.7                                      | -                                                              |                                |
| Input Acceleration (m/s <sup>2</sup> ) | -                            | 192                                                | -                                        | 275                                                            |                                |

## **Electromechanical Data on Fabricated Horns**

| Measured Results           |         | Voltage             | Current             | Power   | Frequency | Stroke (p-p) |    |        |
|----------------------------|---------|---------------------|---------------------|---------|-----------|--------------|----|--------|
| Horn                       |         | (V <sub>RMS</sub> ) | (A <sub>RMS</sub> ) | (Watts) | (kHz)     | (µm)         |    |        |
| Extended MicroTip Baseline | Average | 31                  | 1.30                | 30      | 35.70     | 178          | ]← | Actual |
|                            | StdDev  | 2                   | 0.07                | 2       | 0.01      | 2.5          |    |        |
|                            |         |                     |                     |         |           |              |    |        |
| SaberTip                   | Average | 23                  | 0.80                | 17      | 35.79     | 125          | -  | Actual |
| Initially, 50 Samples      | StdDev  | 0.5                 | 0.03                | 0.4     | 0.05      | 0.4          |    |        |

### **Summary of Finite Element Analysis – Extended MicroTip Plus**

|                                        | Extended MicroTip Plus<br>Forcing Function | Extended MicroTip Plus<br>Base Excitation<br>Surface Constraints | Extended Standard Tip<br>Forcing Function | Extended Standard Tip<br>Base Excitation<br>Surface Constraints |                                |
|----------------------------------------|--------------------------------------------|------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------|--------------------------------|
| Stack Displacement peak (µm)           | 5                                          | 5                                                                | 5                                         | 5                                                               | <ul> <li>Normalized</li> </ul> |
| Stack Acceleration (m/s <sup>2</sup> ) | 272 x10 <sup>3</sup>                       | 277 x10 <sup>3</sup>                                             | 272 x10 <sup>3</sup>                      | 277 x10 <sup>3</sup>                                            |                                |
| Horn von Mises Stress (MPa)            | 211                                        | 240                                                              | 249                                       | 297                                                             | <ul> <li>Maintained</li> </ul> |
| Hole von Mises Stress (MPa)            | 168                                        | 155                                                              | 212                                       | 191                                                             |                                |
| Horn Stroke peak-peak (µm)             | peak-peak (µm) 142                         |                                                                  | 142                                       | 147                                                             | <ul> <li>Simulated</li> </ul>  |
| Horn Acceleration (m/s <sup>2</sup> )  | 3.81 x10 <sup>6</sup>                      | 3.99 x10 <sup>6</sup>                                            | 3.78 x10 <sup>6</sup>                     | 3.99 x10 <sup>6</sup>                                           |                                |
| Resonant Frequency (Hz)                | 36,745                                     | 37,078                                                           | 36,873                                    | 37,172                                                          |                                |
| Input Forcing Function (N) 978         |                                            | -                                                                | 978                                       | -                                                               |                                |
| Input Damping (%)                      | 1.755                                      | -                                                                | 2.86                                      | -                                                               |                                |
| Input Acceleration (m/s <sup>2</sup> ) | -                                          | 1954                                                             | -                                         | 234                                                             |                                |

## **Electromechanical Data on Fabricated Horns**

| Measured Results       |         | Voltage             | Current             | Power   | Frequency | Stroke (p-p) |   |        |
|------------------------|---------|---------------------|---------------------|---------|-----------|--------------|---|--------|
| Horn                   |         | (V <sub>RMS</sub> ) | (A <sub>RMS</sub> ) | (Watts) | (kHz)     | (μm)         |   |        |
| Extended MicroTip Plus | Average | 34                  | 1.31                | 32      | 35.78     | 145          | _ | Actual |
| Initially, 21 Samples  | StdDev  | 1                   | 0.01                | 1       | 0.04      | 2.54         |   |        |
|                        |         |                     |                     |         |           |              |   |        |
| Extended Standard Tip  | Average | -                   | -                   | -       | 35.75     | 145          |   | Actual |
| Production data only   | StdDev  | -                   | -                   | -       | -         | -            |   |        |

#### **Gaussian Profiles – Known Frequency Shift**

| $\omega_{i} = \frac{C_{g}}{L_{tip}} \left( at \right)$ | $ an\left(\frac{1}{\sqrt{2\ln(N)}}\right) $ | $\left(\frac{1}{2}\right) + \sqrt{2\ln(1)}$ | $\overline{N}$ ) $f_i = \frac{\omega_i}{2\pi}$ | $N = \frac{S}{S}$ | S <sub>g0</sub> (Area)<br>S <sub>c</sub> (Area) | S <sub>gO</sub> |                                              |         |                                         | $ = S_c $                    |
|--------------------------------------------------------|---------------------------------------------|---------------------------------------------|------------------------------------------------|-------------------|-------------------------------------------------|-----------------|----------------------------------------------|---------|-----------------------------------------|------------------------------|
| Frequency                                              | / A                                         | B                                           | <<< Minus 50<br>C                              | ) Hz<br>D         | E                                               | Plus 50 H<br>F  | lz>>><br>G                                   | н       | L                                       | J                            |
| Adjustmen                                              | ts Profile                                  | Profile                                     | Profile                                        | Profile           | Profile                                         | Profile         | Profile                                      | Profile | Profile                                 | Profile                      |
|                                                        | - 200 HZ                                    |                                             |                                                |                   | 35,750 H                                        | Z               |                                              |         |                                         | +250 HZ                      |
| Mechanica Results                                      |                                             | t <b>s</b><br>For                           | SaberTip<br>Forcing Function                   |                   | Extended<br>MicroTip Plus<br>Forcing Function   |                 | Extended<br>Standard Tip<br>Forcing Function |         | Extend<br>Micro<br>Forcing Fu<br>Baseli | ded<br>Tip<br>unction<br>ine |
| Resonant Frequency (Hz)                                |                                             | Hz)                                         | 36,925                                         |                   | 36,745                                          |                 | 36,873                                       |         | 36,614                                  |                              |

#### • Frequency "shift" expected

- Designed for resonance at 100% amplitude and quiescent operating conditions
- FEM results more comparable to low-power spectrum analysis of system
- Reduction in stiffness at quiescent operating point, incomplete model of joint compliance, geometry, case attachments, elastic properties, etc
- Consistency for transducers and "family" of horns supports prediction for initial manufacturing, as noted for the four 36 kHz examples shown and also in 23 kHz prototypes
- Multiple profiles afford adjustments and support known titanium material properties variance
- Complete FEM at extremes of profiles and modal frequency analysis for all columns

# Summary:

- Solid Model FEM (Finite Element Method)
  - Stroke typically predicted with 3  $\mu m$  or 2 % error
  - SaberTip stroke predicted within 8  $\mu m$  or 6.5 % error
  - Both methods of FEM analysis indicate allowed stress at or below baseline surgical horns employed for 10 years
  - Allowed stress about 1/3 yield strength of materials
  - Resonant frequency target attained in fabrication with aid of FEM results and known frequency shift
- Extensive successful verification and validation testing
  - Surgical tips released in April of 2006

### **Background:**

- Endoscopic-Nasal Surgery in sphenoid sinus region using surgical bone tip
- Creating a cavity to aid in reduction of cranial pressure
- Removal of bone on dura



### **Acknowledgements**

- University of Pittsburgh Medical Center
  - Dr. Amin Kassam (Co-inventor of horns described), Dr. Ricardo L.
     Carrau, Dr. Carl H. Snyderman, Dr. Paul Gardner, and Dr. Arlan Mintz
  - Development, Endoscopic-Nasal courses and conferences, cadavericsection testing, and clinical and surgical interactions
- UVA Medical Center
  - Dr. Jane, Dr. Han, and Dr. Ashok for assistance in initial bone cutting cadaveric-section efforts
- Integra Radionics
  - Peter Gould and CUSA Tips Team for laboratory efforts, operations, and regulatory efforts
  - Zach Leber, Chris von Jako, and Peter Colgan for direction and continued support throughout the course of this work\_\_\_\_\_

