

UIA 2006 Symposium

A reference vessel for acoustic cavitation: initial characterisation of the spatial distribution of cavitation activity derived using an acoustic emission sensor

Bajram Zeqiri National Physical Laboratory (United Kingdom)

13 March 2006

Plan for presentation

- Background and up-date;
- Cavitation sensor;
- Reference vessel;
- Measurements of acoustic pressure distribution using a hydrophone;
- Preliminary characterisation of the **cavitation activity** distribution within the reference vessel;
- Future.

Background

The requirement for characterisation methods for acoustic cavitation

- A uniform traceable base for measurement would be invaluable for checking equipment;
- It would lead to an acceleration in fundamental understanding of processes taking place leading process optimisation;
- In medicine, it would result in improved surgical procedures and better planning of treatment regimes.

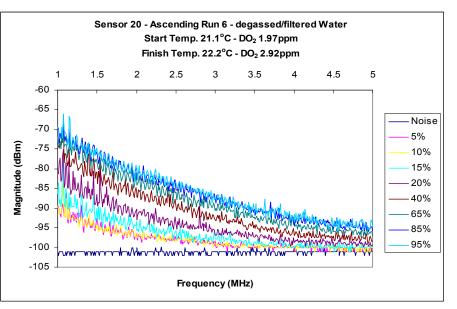
A measure of cavitation "quality" was required – cavitation "strength", cavitation energy, the number of events taking place per unit time and their violence;

The distribution of both types of quantity throughout the reaction vessel was required.

Candidate monitoring techniques for inertial cavitation

- Sonochemistry: ESR and terephthalic acid
- Broadband acoustic emission
- Sonoluminescence (chemiluminescence)
- Erosion soil removal
- Erosion aluminium foil
- Erosion lead balls or stainless steel ball bearings (weight loss)
- Bio-effect (haemolysis)

Cavitation sensor


Concept for cavitation sensor developed at NPL under Strategic Research project

> acoustic emissions from bubbles detected using thin piezoelectric material (*pvdf*);

• 4 mm thick polyurethane absorber 'shell' eliminates MHz signals generated outside the cylinder;

 perturbation of 40 kHz component minimised by using absorber material whose acoustic impedance is matched to that of water,

For further information about the cavitation sensor:-

 A novel sensor for monitoring acoustic cavitation. Part I: Concept, theory and prototype development.^{*}

Bajram Zeqiri, Pierre N Gélat, Mark Hodnett and Nigel D Lee, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol.50, No. 10, October 2003, 1342 – 1350.

• A novel sensor for monitoring acoustic cavitation. Part II: Prototype performance evaluation.

Bajram Zeqiri, Pierre N Gélat, Mark Hodnett and Nigel D Lee, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol.50, No. 10, October 2003, 1342 – 1350.

* Awarded IEEE UFFC Outstanding paper award for 2003.

Reference vessel

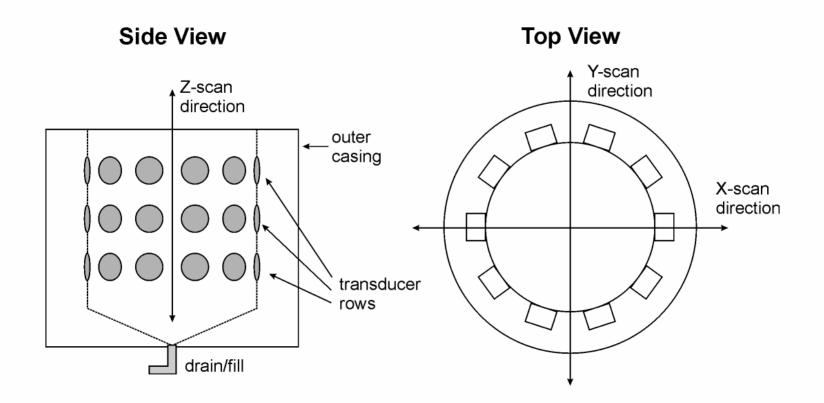
Rationale behind reference vessel

 To generate a cavitation field whose properties are <u>repeatable</u>, for use as a test bed to carefully compare cavitation detection techniques;

- Robert E Apfel, "three golden rules":
 - "know thy liquid"
 - "know thy sound field"
 - "know when something happens"

Requirements of a cavitation reference vessel

- Variable output power, above and below the cavitation threshold;
- Ideally generate a relatively '**simple**' cavitation field, with some spatial variation;
- **Reproducible** and ideally **predictable** performance;
- Must include **environmental control** infrastructure;
- Number of device ports and linked devices;
- Useable with a range of cavitation monitoring techniques.

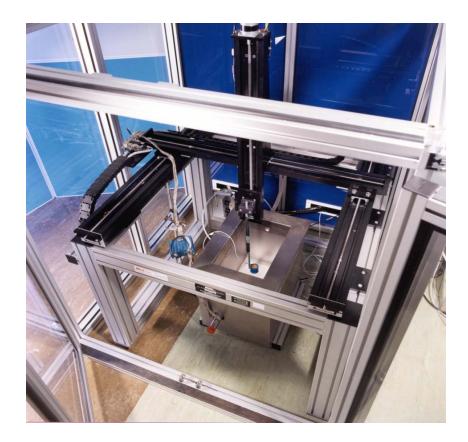

Sonic Systems sonochemical cell specification

- Based on P1800-25 Ultrasonic Processing cell (Sonic Systems);
- Cylindrical volume, 330 mm high, I/D 312 mm (25 litres);
- 30 nominally identical 25 kHz transducers: three rows of 10;
- Three generators supplying 600 W electrical power per row.

Schematic of 25 kHz reference vessel, describing X,Y and Z directions

Initial characterisation of the acoustic pressure field

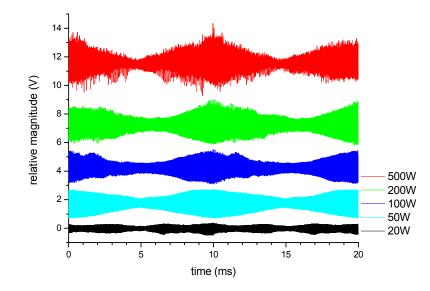
- Carried out using Bruel and Kjaer 8103 hydrophone;
- Filtered- deionised water used;
- 50 ml of Olympus UCS II surfactant added;
- Typically, pre-conditioning used, 100 W for 30 minutes prior to measurements starting;
- Both spectral acquires, and **V**_{rms} undertaken.

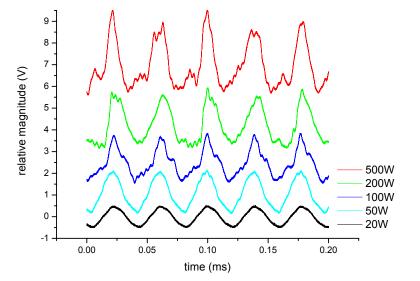


Integrated measurement facility

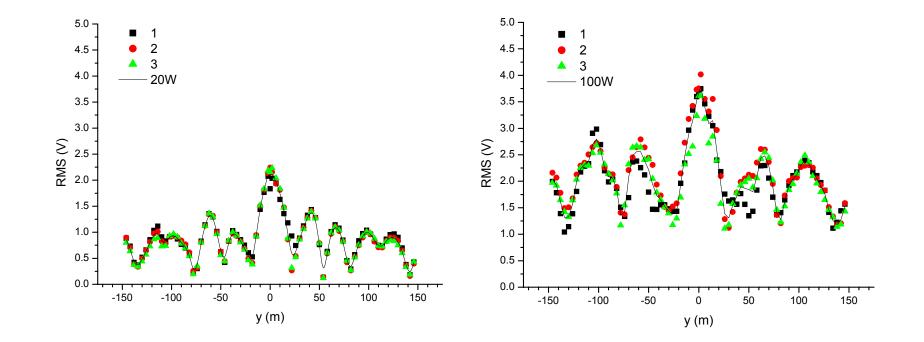
• Motor-driven three axis positioning system, resolution 5 μ m;

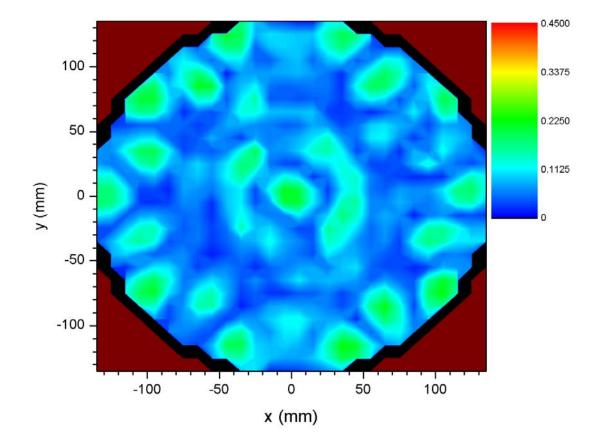
- Environmental enclosure;
- Associated water management system;
- Responses of sensors measured using HP 3589A spectrum analyser or be-spoke prototype electronics.



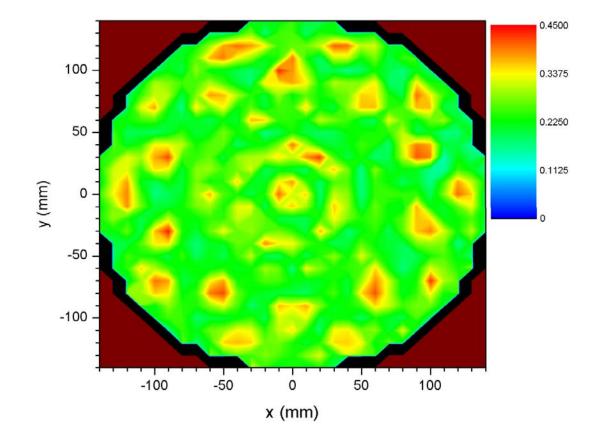


Acoustic pressure field: characterisation using a hydrophone


Typical waveforms 5 power settings and 5 cycles, determined using hydrophone



B&K 8103 hydrophone, at 20 W and 100 W; Y-axis, in-between transducers

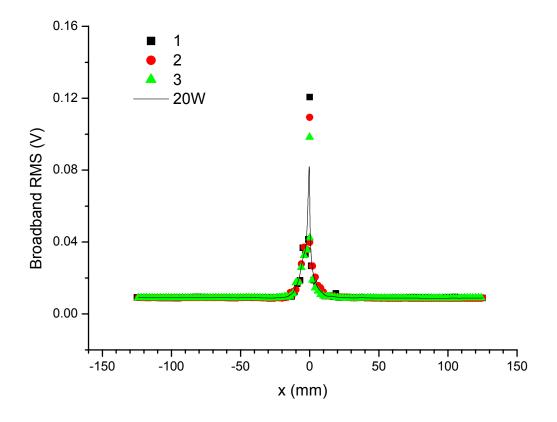


$V_{rms}(x,y)$ at 20 W (dx = dy = 5 mm, 22.2 °C, color ranges:0 - 0.24).

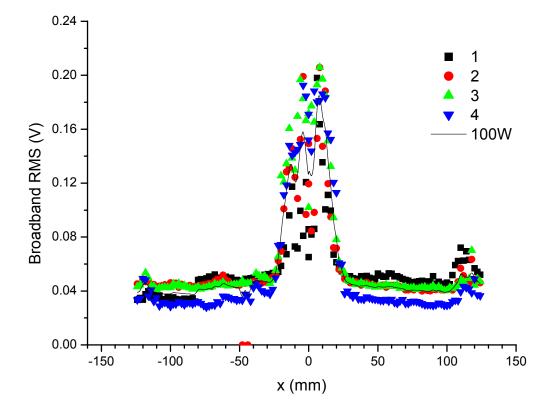
V_{rms}(x,y) at 500W (*d*x = *d*y = 10mm, 25.6 - 33.9 °C, colour ranges: 0.1 - 0.45).

Preliminary characterisation of the cavitation activity distribution within the reference vessel

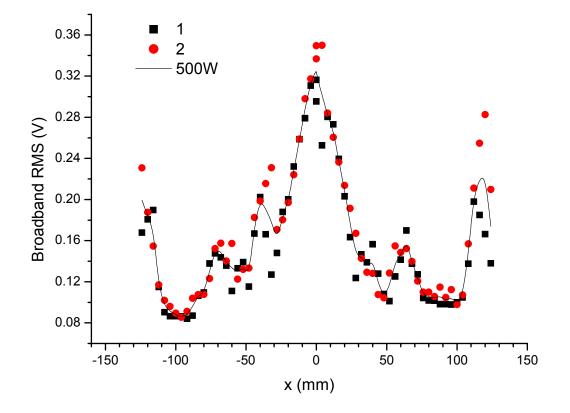
Custom-made electronics module used to analyse sensor signals


 Sensor signals fed to analogue electronics module (ACAM II);

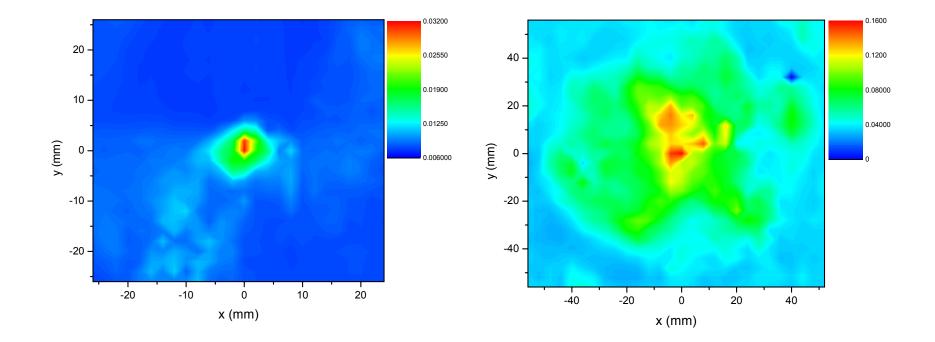
- This gives the broadband *rms* signal level over the frequency range 1 to 7 MHz;
- This quantity is taken as a measure of the <u>'degree'</u> of cavitation;
- Signal can be time-averaged over a period of 1, 2 or 5 seconds.



Nominal applied power: 20 W; Sensor: JIP_30_1; X-direction, 21.5 °C – 23 °C; 1 second averaging time.



Nominal applied power: 100 W; Sensor: JIP_30_1; X-direction, 22.1 °C – 27.65°C;. 1 second averaging time.

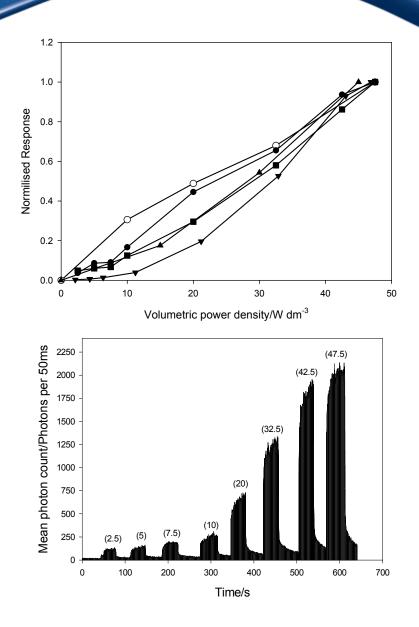


Nominal applied power: 500 W; Sensor: JIP_30_1; X-direction, 25.3 °C – 35.4 °C; 1 second averaging time.

2-D cavitation activity distribution, JIP_30_1. Left: 20 W; Right: 100 W.

Future work

<u>COMORAC:</u> collaboration between NPL, ISVR, St. Thomas' Hospital, Bath University and Coventry University.

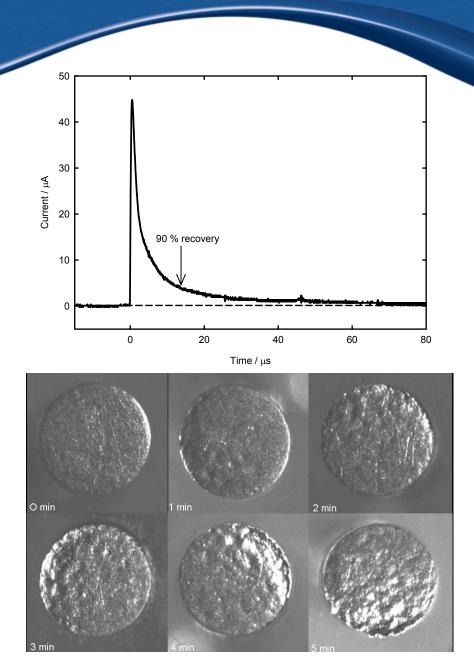

> Bubble and Particle Dynamics in Acoustic Fields: Modern Trends and Applications, 2005: ISBN: 81-7736-284-4 Editor: Alexander A. Doinikov

> > Characterisation Of Measures Of Reference Acoustic Cavitation (COMORAC): An experimental feasibility trial

T.G. Leighton¹, P. R. Birkin², M. Hodnett³, B. Zeqiri³, J. F. Power^{1,2} G. J. Price⁴, T. Mason⁵, M. Plattes⁵, N. Dezhkunov⁴ and A.J. Coleman⁷ Institute of Sound and Vibration Research, University of Southampton Highfield, Southampton SO17 IBJ, UK; ¹School of Chemistry, University of Southampton, Highfield, Southampton Road, Teddington, TWI I Laboratory, Quality of Life Division, Hampton Road, Teddington, TWI I 0LW, UK; ¹Department of Chemistry, University of Bath, Claverton Down Bath BA2 7AY, UK; ¹School of Natural and Environmental Sciences University of Coventry, Coventry CVI SFB, UK; ⁴Laboratory of Ultrasound Technologies, Belarus State University of Informatics and Radioelectronics, P Browka St. 6, 220027, Minsk, Belarus; ⁷Medical Physics Department St Thomas' Hospital, Guy's and St. Thomas' Health Trust, London SEI 7EH, UK;

Abstract

There is a need to provide some standard measure for 'cavitation'. This has featured strongly within the requirements of the UK Department of Trade and Industry's National Measurement System Directorate,


Surface erosion of an electro-chemical electrode

 Collaboration with Institute of Sound and Vibration Research, University of Southampton;

novel electrochemical technique used to monitor surface erosion (Aluminium or Titanium);

 re-growth of passivating layer seen as rapid current spike;

• electrode is of high spatial resolution (250 microns).

Summary

- Progress towards developing a reference cavitation vessel has been reported

 the cylindrical sonochemical reactor vessel operates at 25 kHz and up to 1.8 kW;
- The spatial variation of **acoustic pressure** has been studied using an underwater acoustics hydrophone;
- The spatial distribution of **cavitation activity** has been evaluated using a novel cavitation sensor developed at NPL;
- Cavitation activity **correlates well** with the acoustic pressure distribution determined using the hydrophone.
- The performance of the **reference vessel** will be studied as the basis of a testbed for cavitation monitoring methods.

Support from the National Measurement System Directorate of the UK DTI is acknowledged

