High Intensity Focused Ultrasound (HIFU) The Future of Local Control for Cancer Therapy? **Techniques and Challenges** Gail ter Haar Joint Department of Physics Royal Marsden Hospital: Institute of Cancer Research Sutton, Surrey, UK

INTENSITY RANGES

Diagnostic US: 0.01-0.1 Wcm⁻²

Therapy US: 0.1-3.5 Wcm⁻² Surgical US: 800 -1500 Wcm⁻²

Heating for tissue destruction

Energy is deposited fast enough for cooling by thermal conduction & blood perfusion to be insignificant

IMAGING for treatment monitoring

Monitoring and Assessing Tumour Response

Changes in real-time US images during HIFU procedure for Large human HCC

Wu F et al 2004 Ann. Surg. Oncology 11: 1061-1069

Imaging HIFU treatments : other methods under investigation

MRI thermometry functional imaging

 US elastography
radiation force imaging temperature imaging functional imaging

Transducers

- Frequencies from 0.5 to 4.0 MHz
- Spatial peak intensities up to 20kWcm⁻²
- Focal lengths from 3 to 15 cm
- Many different geometries
- Phased arrays
 - multiple simultaneous foci

Extracorpored HIFU

Extracorporeal HIFU Devices

US guided

MRI guided

Insightec

Shanghai Aishen

HIFU Unit Churchill Hospital, Oxford

HAIFU 'JC-Tumor Therapy System'

HIFU in the PROSTATE

Transrectal devices

CE marked

'Ablatherm' device, EDAP Technomed, France

Sonablate[®] 500

Sonablate 500, Focus Surgery, USA

Integrated Probe

Imaging:

- 128 elements electronic array
- B&K image processing
- 7.5 MHz:
- Real time imaging

Therapy:

- Large aperture transducer
- 3 MHz working frequency
- Piezo-composite technology

Extracorporeal HIFU

Clinical Trials

Churchill Hospital, Oxford

Endpoints

• Primary

 Adverse events and variations in clinical laboratory data in first 28 days after treatment

Secondary

- Radiological & Histological evaluation

LIVER Cancer

Metastatic colorectal carcinoma

T1 weighted images, 1 minute post IV contrast

Pre-HIFU

12 days post-HIFU

KIDNEY Cancer

Primary renal tumour - not fit for resection

T1W MRI (1min post gadolinium contrast) subtraction films

Pre HIFU

12 days post HIFU

Tumour Characteristics

	Range (mm)	Mean (mm)
Size (maximum transverse diameter on US)	17-120	38
Skin to superficial margin of tumour	14-115	39
Skin to deep margin of tumour	44-185	71

Disadvantages and future challenges of FUS

Does not travel through air or bone

Equipment Expensive initially

Treatment is slow

Approaches to reduction of treatment times :

1. New scanning & transducer geometries

2. Tissue modification

Tissue modification:

1. Introduction of gas bubbles contrast agents cavitation bubbles 2. Reduction of vascular perfusion TACE vascular occlusion

Summary:

1. HIFU has already shown great promise in the clinic

2. In order for HIFU to become more widely accepted we need to understand and improve the ultrasonic energy delivery and treatment monitoring

Strengths of FUS

- Non-invasive method of programmed tissue destruction
- ⇒ High spatial specificity
- ⇒ Damage is "bloodless"

Strengths of FUS

⇒ Minimal normal tissue toxicity

⇒Repeatable

⇒Tissue sparing possible (NVB)

⇒Salvage treatment

Summer School on **THERAPEUTIC ULTRASOUND** CARGESE, April 10th – 13th 2007

Directors : Gail ter Haar & Mathias Fink

Organised by : Jean-François Aubry, Mickaël Tanter

http://www.loa.espci.fr/therapeutic.htm